LANDFILL ANNUAL REPORT

FILL ANNUAL REPORT For Calendar year 2012

Administrati	us Information (D			FEB 2	7 2013
Administrati	ve information (P	lease enter all the information	ation requested below)	2013-	002106
Facility	Name: Bayview La	ndfill			
Facility	Mailing Address: P.O	. Box 507			
		(Number & Street,	Box and/or Route)		
	City: Springville		Zip Code: 8466	3	
			Per		
Owner				an 1999 - 1997 - 1993 - 2000 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 199 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993	
	Name: South Utah V	allev Solid Waste Dist	rict Phone No.: (8	801)489-3027	
		ress: P.O. Box 507, 24			
	9		treet, Box and/or Route)	-1000 - 1000 - 10	
	City: Springville		Zip C		
	Contact Name: Terry	/ Ficklin	Contact Title: C	General Manager	
	Contact's Mailing Ad	ddress: <u>P.O. Box 507, S</u>	Springville Utah 84663		
	Phone No.: (801)48	9-3027 C	ontact's Email Address: tfi	cklin@suvswd.org	
Operate	or (Complete this section on	ly if the operator is not an em	ployee of the Owner shown abov	ye)	
	Name:		Phone No.:		
	Owner Mailing Add	ress:			
	<u></u>		treet, Box and/or Route)	N 1	
			Zip C		
			Contact Title:		
	Phone No.:	C	ontact's Email Address:		
Facility Type	e and Status				
				Essility Cl	and during
			Class V	the year	osed during
	,	Class IVa	Class VI	Date Closed:	
	Class IIIa	Class IVb			
Annual Disp	osal (Tons received at th	e facility for disposal)			1.00 a. a. p. m. ou
Waste Type		Waste Origin	То	tal	Measurement
waste rype	In-State	Out-of-S			s Cubic Yard
Municipal		041-01-5			
ndustrial	122,861.53		122,861.53		
C/D*	sta includes all westa going	to a Class IV or VI landfill ce			1
		to a Class I v or vI landini ce		x	
Conversion 1	Factor Used				
🗵 No	ne Used 🦳 Site S	pecific 🔽 From Ru	les List Site Specific (Conversion:	
			1		4.11.100 m

	Material Recycled: Reported in Tons 🔽 Cubic Yards 🔽
Utah	Disposal Fee
	Disposal fee required to be paid to State Yes \overline{X} No Γ (If yes please show fees paid below)
	Municipal: Industrial: C/D: Annual: \$14,700.00
	Municipal, Industrial and C/D are fees paid by Commercial Facilities. Annual fee is paid by facilities operated by a municipal
Curre	ent Landfill Remaining Capacity
	Tons: Cubic Yards: Acre: Years: 70.00
	Acres Currently Open: 43.00 Acres Currently Closed: 32.00
Finan	cial Assurance
	Current Closure Cost Estimate: \$1,425,465.00
	Current Post-Closure Cost Estimate: \$1,048,657.00
	Current Amount or Balance in Mechanism: \$3,082,176.19
	(If facility permit has been renewed and if balance does not equal or exceed total for closure and post-closure care please contact the Divi
	Current Financial Assurance Mechanism: Utah Public Treasurers' Investment Fund
	(ie. Bond, Trust Fund, Corporate or government Test etc.)
	Current Financial Assurance Mechanism Holder: PTIF #254
	(ie. Name of Bond Company, Bank etc. Account number)
	<u>Financial Assurance</u> : Each facility must recalculate the cost of closure and post-closure care to account for inflation and design changes each y The inflation factor can be found on the Division web page. Facilities that are using a trust account should include a copy of the most recent
	account statement. Note Facilities using "Local Government Financial Test" or the "Corporate Financial Test" must provide the information required in R315-309-8(4) or R315-309-9(3) each year.
Other	Reports and Information to be Submitted with Annual Report
	Ground Water Monitoring: Class I and V landfills only. Check if exempt
	Explosive Gas Monitoring: Class I, II and V landfills only. Check if exempt
	Does the facility have a landfill gas collection system Yes Γ No $\overline{\times}$
	If yes please briefly describe use of gas, e.g., flared or used for electricity generation.
	Training Report: A report of all training programs or procedures completed by facility personnel during the year.
~ .	
Signa	ture: <u>lenny fuchlic</u> Date: <u>2-25-2013</u>
	e should be by an executive officer, general partner, proprietor, elected official, or a duly authorized representative. A duly authorized representat
Signatur nust me	et the requirements of the solid waste rules (UAC R315-310-2(4)(d)).

Division of Solid and Hazardous Waste

FEB 2 7 2013 2013-002106

SOUTH UTAH VALLEY SOLID WASTE DISTRIC

Bayview landfill

2012 training and certifications

Landfill supervisor	Equipment operators
MOLO certified	1 Fire I and 2 certified
Fire fighter 1 and 2 certified	1 Hazmat awareness certified
Hazmat awareness certified	1 hazmat operations certified
Hazmat operations certified	7 CPR AED certified
CPR and AED certified	2 certified composting
Apparatus driver operator P	technical associates

Certified

Training Topics 2012

Monthly Safety Training

Personal Protective Equipment

SCBA testing and use

SWPPP spills Training

Incident Command system

200 300 400 700

GPS Training

Equipment Mounting and Dismounting 3 points of contact

Emergency Response Plan

Welding Safety

Heavy Equipment Use and Operations

Equipment Walk Around Inspections

Tender-Water Truck Operations

Communicating safely

Safety mistakes

Ergonomic safety

Heavy equipment rescue

Pumps repair and operations

South Utah Valley Solid Waste District Bayview Landfill Quarterly Landfill Gas Monitoring Results								
		16t Quar	ter 2012					
Date 4/20/2012		6 °						
Time 11:30								
Weather OURP CEST	braezy	······	Temperatu	<u>~ 55°</u>				
Sample Collector Scott	•							
Monitoring Device Calibrated	l Prior to sampling.	res No		•				
Monitoring Device Used: Ph	D Plus Multi Gas Detec	tor						
÷ ,	Monitoring Location	Measured %LEL	Internal Action Limit Half Regulatory Limit %LEL	Regulator Action Limit %LEL				
- Maintenance Shop Outside		0%	12	25				
Office Lunch Room Inside 0% 12 25								
North Boundary		0%	50	100				
South Boundary		0%		100				

Gas Sample Collector: If measured %LEL equals or exceeds internal action limit, contact landfill supervisor.

0%

West Boundary

Pump House

Landfill Supervisor. If measured %LEL equals or exceeds regulatory action limit, notify the State Director, in compliance with 40 CFR 258.23c.

.50

.

100

comments: weather was sool with soth process ND Signs Of Stressed Legitation

South Utah Valley Solid Waste District Bayview Landfill Quarterly Landfill Gas Monitoring Results

2nd Quarter 2012

Date <u>7/26</u> Time 1:15

Weather <u>Sunny</u>	Slight	breeze	Temperature80°
Sample Collector	Aitken		

Monitoring Device Calibrated Prior to sampling.

Monitoring Device Used: PhD Plus Multi Gas Detector

	Monitoring Location	Measured %LEL	Internal Action Limit Half Regulatory Limit %LEL	Regulator Action Limit- %LEL
Maintenance Shop Outside		0%	12	25
Office Lunch Room Inside		0%	12	25
North Boundary		0%	50	100
South Boundary		0%	50 ··· - ··	100
East Boundary Leachate Pond		0%	50	100
West Boundary Pump House		0%	.50	100

Gas Sample Collector: If measured %LEL equals or exceeds internal action limit, contact landfill supervisor.

Landfill Supervisor: If measured %LEL equals or exceeds regulatory action limit, notify the State Director, in compliance with 40 CFR 258.23c.

comments Rain showers yesterday ground not muddy slight breeze out of The 5Th Samples Collected By SCOTT Aitken

South Utah Valley Solid Waste District Bayview Landfill Quarterly Landfill Gas Monitoring Results						
3 Quarter 2012						
Date <u>9/14/</u> Time <u>10:45</u> um						
Weather Slight OVER CAST Slight breeze Emperature B2° Sample Collector Scift Aitken						
Monitoring Device Calibrated Prior to sampling.						
Monitoring Device Used: PhD Plus Multi Gas Detector						

Monitoring Location Measured Internal Action Limit Regulator Action Limit-%LEL Half Regulatory Limit %LEL %LEL 0% 12 Maintenance Shop Outside 25 0% Office Lunch Room Inside 12 25 50 North Boundary 0% 100 % **50** · 100 South Boundary Ο . -----0% East Boundary 100 50 Leachate Pond -____ 0% West Boundary .50 100 Pump House

۰.

Gas Sample Collector. If measured %LEL equals or exceeds internal action limit, contact landfill supervisor.

Landfill Supervisor. If measured %LEL equals or exceeds regulatory action limit, notify the State Director, in compliance with 40 CFR 258.23c.

comments slight brace out of south dry___

Samples Collected By Scott Aitken

South Utah Valley Solid Waste District Bayview Landfill Quarterly Landfill Gas Monitoring Results									
4th Quarter 2012									
Date 11/30/2012. Time 10:30									
Weather <u>breezy</u> Sample Collector <u>Scott</u>		cold	Temperatur	re40°					
-	Monitoring Device Calibrated Prior to sampling. Is No Monitoring Device Used: PhD Plus Multi Gas Detector								
-	Monitoring Location	Measured %LEL	Internal Action Limit Half Regulatory Limit %LEL	Regulator Action Limit %LEL					
Maintenance Shop Outside		0%	12	25					
Office Lunch Room Inside		0%	12	25					
North Boundary		0%	50	100					
South Boundary									
East Boundary Leachate Pond	East Boundary								
West Boundary Pump House		0%	50	100					

Gas Sample Collector: If measured %LEL equals or exceeds internal action limit, contact landfill supervisor.

Landfill Supervisor. If measured %LEL equals or exceeds regulatory action limit, notify the State Director, in compliance with 40 CFR 258.23c.

comments cold rain showers breezy.

Samples Collected By Scott Aitkn

February 25, 2013

HDR

Terry Ficklin General Manager South Utah Valley Solid Waste District 2450 West 400 South Springville, Utah 84663

Re: Updated Closure and Post Closure Care Cost Estimates

Dear Terry:

This letter transmits an updated closure and post closure cost estimate. Because there was not change in the landfill operations, the cost estimates prepared in 2012 were inflated to reflect 2013 dollars. An inflation factor of 1.01767 (1.767%) was applied as recommended by the Division of Solid and Hazardous Waste¹. The total closure and post closure care estimate for 2013 is **\$2,474,122**. Please include a copy of your trust fund balance when you submit these estimates.

I appreciate the opportunity to provide engineering services to the District. If you have any questions or comments regarding this report, please contact me at (801) 743-7812.

Sincerely,

Juny Whene

Terry Warner, P.E.

enclosure

HDR Engineering, Inc.

3949 South 700 East Suite 500 Salt Lake City, UT 84107 Phone (801) 743-7800 Fax (801) 743-7878 www.hdnnc.com

¹ http://www.hazardouswaste.utah.gov/Solid_Waste_Section/epadocs.htm, Accessed on Feb 20, 2013

Bayview Landfill Closure Cost Estimate Cell 2 - Stages 1 and 2 (2013 Dollars)

Cell #2 Stage 1	20	Acres
Cell #2 Stage 2	23	Acres
Total	43	Acres

7

	Item	Unit	Unit Cost	Quantity	Cost
1.00	Engineering/Management				
1 01	Topo Survey Initial	HR	\$150	95	\$14,250
1.02	Topo Survey Final	HR	\$150	80	\$12,000
1 03	Site Reconnaissance	HR	\$150	55	\$8,250
1 04	Boundary Survey	HR	\$150	40	\$6,000
1.05	Construction Plans/Specs	LUMP	\$57,000	1	\$57,000
1 06	Bidding and Award	LUMP	\$6,200	1	\$6,200
1 07	Quality Control Testing	LUMP	\$20,500	1	\$20,500
1 08	Construction Management/QC	LUMP	\$180,000	1	\$180,000
1 09	Closure Report/As-Builts	LUMP	\$25,000	1	\$25,000
1 10	Obtain UPDES and other permits	LUMP	\$11,000	1	\$11,000
			Subtotal		\$340,200
			Contingency	20%	\$68,040
			Engineering S	ubtotal	\$408,240

2.00	Construction				
2 01	Grading Top of Intermediate Cover (1)	SY	\$1 28	208,120	\$265,626
	34" On-site Soil for Final Cover				
2 02	Placement/Grading (4) (5)	CY	\$2 30	196,558	\$451,565
2 03	Leachate Collection ⁽²⁾	LS	\$0 00	0	\$0
2 04	Silt Fence/Erosion Control (3)	LF	\$2 55	5,500	\$14,039
2 05	Dust Control and Watering	LS	\$12,200 00	1	\$12,200
2 06	Drainage Ditches	LF	\$3 06	5,500	\$16,847
2 07	Temporary Drainage Control	LS	\$11,200 00	1	\$11,200
2 08	Gas Collection System ⁽⁶⁾	ACRE	\$15,000 00	0	\$0
			Subtotal		\$771,478
			Contingency	20%	\$154,296
			Construction S	ubtotal	\$925,773

Summary	Engineering		\$408,240
	Construction		\$925,773
	Inflation Adjustment	1 767%	\$23,572
	Legal	5%	\$67,879
		Total	\$1,425,465

Assumptions/Notes

- 1 Estimate assumes closure of Cell #2 Stage 1 and 2
- 2 Leachate collection system was constructed with Cell 2 Stage 2 and no additional improvements will be necessary
- 3 No permanent culverts or drainage piping is required
- 4 Assumes cover is imported from areas near Bayview
- 5 Assumes topsoil is available onsite
- 6 Active gas collection system not required at this time

Bayview Landfill Post-Closure Care Cost Estimate for Cell 1 and Cell 2 - Stages 1 and 2 (2013 Dollars)

COST ESTIMATE FOR LANDFILL POST-CLOSURE CARE

	Item	Unit	Unit Cost	Quantity	Cost
10	ENGINEERING				
11	Post Closure Plan	LUMP	\$6,200	1	\$6,200
12	Site Inspection & Recordkeeping (quarterly)	PER YEAR	\$3,200	30	\$96,000
13	Correctional Plans & Specs (annual)	PER YEAR	\$1,300	30	\$39,000
1.4	Site Monitoring (semi-annually) ⁽¹⁾	PER YEAR	\$18,000	30	\$540,000
	MAINTENANCE COSTS ⁽²⁾	PER YEAR	\$6,000	30	\$180,000
30	LEACHATE DISPOSAL ⁽³⁾	PER GALLON	\$0 05	0	\$0
			Sub	ototal	\$861,200
			Inflation Adjus	stment (1.767%)	\$15,217
			Continge	ncy (20%)	\$172,240
			Τα	otal	\$1,048,657

Closure Estimate (previous page) \$1,425,465

Total Closure/Post Closure

\$2,474,122

Assumptions/Notes

- 1 Includes groundwater monitoring and statistical analysis and gas sampling
- 2 Includes repairing eroded final cover material with on site material, compost and seed
- 3. Leachate is treated on site, no dipsosal is required

.

STATEMENT OF ACCOUNT

PTIF

UTAH PUBLIC TREASURERS' INVESTMENT FUND

Richard K. Ellis, Utah State Treasurer, Fund Manager

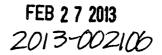
PO Box 142315

350 N State Street, Suite 180

Salt Lake City, Utah 84114-2315

Local Call (801) 538-1042 Toll Free (800) 395-7665

www.treasurer utah.gov


ESC-SO UT VALL SOLID WASTE PHIL BIRD PO BOX 507 SPRINGVILLE, UT 84663-0507

Account	-		<u> </u>		Account Period
254				January 01, 2013 th	rough January 31, 2013
Summary					
Beginning Bal	lance	\$ 3,080,475.84	Average Daily	Balance	\$ 3,080,475.84
Deposits		\$ 1,700.35	Interest Earned	1	\$ 1,700.35
Withdrawals		\$ 0.00	360 Day Rate		0.6410
Ending Baland	ce	\$ 3,082,176.19	365 Day Rate		0.6499
Date	Activity	D	eposits	Withdrawals	Balance
01/01/2013	FORWARD BALANCE		\$ 0.00	\$ 0.00	\$ 3,080,475.84
01/31/2013	REINVESTMENT	\$ 1	,700.35	\$ 0.00	\$ 3,082,176.19
01/31/2013	ENDING BALANCE		\$ 0.00	\$ 0.00	\$ 3,082,176.19

{Effective: 01/31/2013}

The GASB Fair Value factor at December 31, 2012 is 1.00557603

Division of Solid and Hazardous Waste

APPENDIX S

LANDFILL OPERATIONS PLAN

SUVSWD Bayview Class I Landfill Permit Application

> Originally Submitted February 2004

> > Modified

October 2009

Prepared By: HDR ENGINEERING, INC.

SUVSWD Bayview Class I Landfill Permit Application – Appendix S

Table of Contents

I.0	INTRODUCTION1				
2.0	EMERGENCY RESPONSE AND BACKGROUND INFORMATION1				
	2.1 Emergency Response Actions	1			
1	2.2 Permit Requirements				
	2.3 Landfill Facilities	_			
3.0	SCHEDULE OF FACILITIES CONSTRUCTION	10			
4.0	SOLID WASTE HANDLING	10			
	4.1 Waste Acceptance				
	4.2 Waste Disposal				
	4.3 Placement of Cover Soils				
5.0	INSPECTIONS, MONITORING, AND REPORTING				
	5.1 Inspections				
	5.2 Groundwater Monitoring				
<i>c</i> 0	5.3 Landfill Gas Monitoring				
6.0	CONTINGENCY AND CORRECTIVE ACTION PLANS				
	 6.1 Fire 6.2 Explosion 				
	6.2 Explosion6.3 Failure of Run-Off/Run-On Structures				
	6.4 Release of Explosive Gases				
	6.5 Groundwater Contamination.				
7.0	ALTERNATIVE WASTE HANDLING PROCEDURES				
8.0	MONITORING EQUIPMENT MAINTENANCE				
	8.1 General				
	8.2 Groundwater Monitoring Wells				
	8.3 Gas Monitoring Locations	22			
9.0	DISEASE VECTOR CONTROL	22			
	9.1 Rodent Control	23			
	9.2 Bird Control	24			
10.0	WASTE SCREENING	24			
II.0	RECYCLING	25			
12.0	COMPOSTING	25			
Table	Table S-1: Recommended Frequency of Inspection of Landfill Facilities 13				
Figure	S. J. Utah Paguiromanta for Groundwater Monitoring	14			
rigule	S-1: Utah Requirements for Groundwater Monitoring	10			

2

1.0 INTRODUCTION

The purpose of this Operations Plan is to assist the Landfill Foreman and Landfill Operating Personnel in conducting day-to-day operations in a manner that is consistent with the various permit requirements, and with the design of the Bayview Landfill. Section 2 describes the emergency response procedures applicable to the landfill, the permit conditions applicable to the landfill, the designed facilities at the landfill, and equipment and personnel requirements for proper operation of the landfill. Section 3 provides a discussion of landfill facilities at the site. Section 4 describes the procedures for handling wastes received at the landfill. Section 5 provides a schedule for conducting inspections, monitoring, and reporting for the landfill facilities. Section 6 provides contingency plans and corrective action programs to be implemented if emergency conditions (e.g., fire or explosion) exist, or if data indicate that containment systems have failed. Section 7 discusses alternative waste handling and disposal during inclement weather. Section 8 describes the maintenance of landfill monitoring equipment. Section 9 describes routine and non-routine procedures to be implemented to control disease vectors. Section 10 addresses waste screening to exclude regulated hazardous wastes. Sections 11 and 12 provide a discussion of the current and planned recycling and diversion of solid wastes at the landfill.

2.0 EMERGENCY RESPONSE AND BACKGROUND INFORMATION

2.1 Emergency Response Actions

Landfill emergencies include: injury, dismemberment, or death of personnel; and fire, explosion, or other catastrophic events. Because of its remote location, the landfill maintains its own fire protection equipment, and personnel are trained in the operation of this equipment. Also because of its remote location, injured personnel will be transported to medical facilities in District vehicles if their condition allows movement. The Landfill Foreman, or his designee, may request that ambulance and paramedical personnel meet the transporting vehicle enroute to the medical facility.

For other emergencies, the following list provides the phone number to access emergency services. This list will be posted directly adjacent to each phone on the facility site within a colorless, protective plastic cover.

Fire and Rescue	911	(801)851-4100
Hospital		
Utah Valley Regional Medical Center		(801) 371-7001
Mountain View		(801) 465-7190
County Fire Marshall	•••••	(801) 851-4100
Sheriff	•••••	(801) 851-4100
District Office		(801) 489-3027

In the event of any emergency, the following personnel will be notified:

Name	, Position/Title General Manager - Board-Chairman -	Work Phone
Terry Ficklin	Board Chairman 0	(801)489-3027
Scott Aitken	Landfill Supervisor	(801)667-2031
Mark Loveless	Transfer Station	(801)489-3027
Dorothy Morse	Executive Secretary	(801)489-3027
-Keith Anderson	<u>Compost-Supervisor</u>	(801)404-6055

2.2 **Permit Requirements**

3

The Bayview Landfill is subject to both State of Utah and local Utah County requirements controlling day-to-day operations at the landfill. The state and local requirements are discussed below.

1

2.2.1 State Requirements

On October 9, 1991, the U.S. Environmental Protection Agency (EPA) published revisions to the Criteria for Classification of Solid Waste Disposal Facilities. These regulations were developed in response to requirements of Subtitle D of the 1984 Hazardous and Solid Wastes Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) of 1976. The Subtitle D regulations set forth minimum federal criteria for municipal solid waste landfills, including facility design and operational requirements. The Subtitle D regulations became effective on October 9, 1993.

Subtitle D establishes a framework for federal, state, and local government cooperation in controlling the management of non-hazardous solid wastes. The federal government's role within this framework is to establish the regulatory direction by providing minimum nationwide standards for protection of human health and the environment, and by providing technical assistance to states for planning and developing their own environmentally sound waste management practices. However, the actual planning, direct implementation, and enforcement of solid waste programs remains a state and local role under the Subtitle D framework.

On July 15, 1993, the Utah Department of Environmental Quality (UDEQ) issued final Administrative Rules implementing Subtitle D at the state level. These rules, entitled Solid Waste Permitting and Management, Rules (8315-301 through 320), have been reviewed by EPA, and the UDEQ has received authorization from EPA to implement and enforce the solid waste management program.

The UDEQ rules require that each landfill develop and comply with its approved Operations Plan. The rules further specify certain operational requirements including: excluding hazardous and bulk liquid wastes; controlling access; controlling disease vectors; controlling air discharges and explosive gases; controlling run-on, run-off, and surface water discharges; and maintaining records. This Operations Plan has been developed to include the requirements of the UDEQ rules.

2.2.2 Utah County Requirements

During the process of permitting the Bayview Landfill site, the Utah County Board of Adjustment enumerated 26 criteria that the landfill must meet to remain in compliance with the Board's Conditional Use Permit. These permit conditions include the following. (Note: These permit conditions are quoted <u>directly</u> from the Conditional Use Permit <u>granted to Provo City</u> and are provided here to make the landfill operators aware of the District's obligations under the Conditional Use Permit. <u>References to "Provo City"</u>, below. can be changed to read "South Utah Valley Solid Waste District")

- 1. Compacted or baled garbage will be placed in trenches and covered at the end of each day.
- 2. The waste will be buried away from the gravel pit area.
- 3. A fence will be installed surrounding each trench area at least eight (8) feet in height and higher if found inadequate to control blowing papers.
- 4. After an area has been filled, it will be contoured, mulched, and reseeded as indicated by the State Agronomist and the State Extension Service.
- 5. There will be a watchman on site during normal working hours.
- 6. The gate will be closed any time it is unattended and it must be locked. (This is the main gate, not that around a particular area being filled.)
- 7. A new access road from the state highway into the deposit area will be provided as required by the Department of Transportation.
- 8. The size of the garbage trucks will meet the requirements of the Utah Department of Transportation and Utah Highway Patrol.
- 9. Provo City will cooperate with the State Highway Department and local residents to prevent inordinate damage to the road during periods when the road is saturated and subject to destruction, and comply with all state and local ordinances conforming to the same.
- 10. All municipal garbage will be collected and compacted at a location other than the landfill site and transported in covered trucks by Provo City.
- 11. No burning is to be allowed at the disposal site.
- 12. The trenching will be done in such a manner as to protect the drainage channels in the area as required by the State Department of Environmental Health.

- 13. No hazardous wastes will be deposited in the area.
- 14. All reasonable caution and prudence be exercised to not dispose of any waste during any unreasonable weather conditions.
- 15. All requirements in the "Code of Solid Waste Disposal Regulations" will be met.
- 16. Any terms of the lease held by Mr. Jacobs are protected and that Provo City cooperates with him during lambing season to minimize the impact on his operation.
- 17. No public dumping.
- 18. Landfill to be used only by Provo City, and if other cities were to use the landfill, approval from the Board of Adjustment would be necessary.
- 19. Personnel will police the grounds outside the fence, and keep litter and garbage picked up.
- 20. Rodent control must be in effect at all times as state law provides.
- 21. Water samples will be taken by the Department of Environmental Health from any wells within 1500' of the disposal site prior to any dumping to determine the water quality. Samples would be taken every six months or more often as determined by the Department of Environmental Health.
- 22. The area used to begin the operation of filling must be selected to minimize the impact on people in the surrounding area.
- 23. In constructing the road or roads required by the Department of Transportation to get access to the landfill, Provo City will minimize the amount of disruption to the environment of the area.
- 24. That Provo City maintain a buffer zone of at least 100' from existing state roads, homes and premises in dumping their compacted garbage.
- 25. Upon noncompliance with any of these provisions Utah County will revoke said right to the landfill.
- 26. Provo City will provide an annual report to the Board of Adjustment for their review as to the progress in the engineering of the landfill.

These conditions will be considered the minimum criteria that the landfill operations must meet to remain in compliance with the Conditional Use Permit.

2.3 Landfill Facilities

At the time of this permit application renewal, the Bayview Landfill consists of one 33-acre landfill cell almost at final grade, one stormwater/leachate evaporation pond, five screening berms, one maintenance building, and appurtenant roads, fences, and culinary and monitoring wells. In addition, an 82-acre cell is currently under design and will be constructed in 15-acre increments or stages. Figure 5 in Part IV provides a layout of the existing facilities at the Bayview Landfill. Each of these facilities was anticipated in the Landfill Master Plan (HDR, 1988) developed for the site, and is described in the following paragraphs. The landfill is also currently equipped with various earthmoving and landfill operations equipment. The types and numbers of pieces of equipment necessary for proper operation of the landfill are described below.

2.3.1 Fixed Landfill Facilities

Cell 1 Stage 1 and Stage 2 have been constructed with a liner and leachate collection system. The liner consists of a 40-mil and 60-mil high density polyethylene (HDPE) geomembrane, respectively, sandwiched between two layers of 12-ounce polypropylene geotextile. At the time of its construction, the liner system was covered with a 2-foot layer of protective soil cover. The liner system and its protective soil cover are critical elements in the landfill leachate containment system; therefore, operators will take all possible precautions to protect the liner system. Damage to the protective soil cover will be inspected, and damage to the liner system will be reported to the District Manager for appropriate action.

Cell 2 will also be constructed with a liner and leachate collection system. The liner will consist of a geosynthetic clay liner (GCL), and a 60-mil high-density polyethylene (HDPE) geomembrane sandwiched between two layers of geotextile. The liner system will be covered by 2 feet of protective cover/leachate collection material.

For Cell 2, the leachate collection system will consist of 2 feet of permeable screened soil on the floor of the landfill cell and a leachate collection trench that is fitted with granular fill and a pipe. The granular fill is surrounded with filter fabric (geotextile). The leachate collected within this system flows by gravity to a sump at the low end of the cell and pumped to the surface, where it then flows by gravity to the on-site leachate sewer line and ultimately to the evaporation pond. The cleanout stations on the pipeline will be inspected on a regular basis to verify integrity.

The stormwater/leachate evaporation pond has been constructed with a liner and a protective cover system. The liner system consists of a 60-mil HDPE geomembrane sandwiched between two layers of 12-ounce polypropylene geotextile. The liner system was covered with a 6-inch concrete pad on the bottom and a 40-mil HDPE geomembrane on the side slopes. The concrete pad extends approximately 3 feet (measured vertically) up the side slopes, and a concrete access road has been constructed to provide equipment access into the bottom of the pond. The concrete pad is intended to allow landfill operators to enter the pond to remove accumulated sediments as required. The concrete bottom and access road will be inspected on a regular basis to verify its integrity. Damage to either the concrete or HDPE protective cover materials will be reported to the District Manager for appropriate action.

The screening berms have been constructed to provide a visual barrier between State Highway 68 and the active landfill facilities. These screening berms also provide a partial visual barrier between properties north and south of the site and the active landfill facilities. The District constructed these berms to lessen the visual impact of the landfill facilities on the passersby, not as a condition of a permit.

The maintenance building consists of three equipment maintenance bays, a combined office/break room, and restroom facilities. This building is locked when landfill operations personnel are not on-site. The building is supplied with culinary water from the culinary well located in Section 18.

Fourteen Fifteen wells have been constructed around the landfill property to provide stations for monitoring groundwater underlying the site. Eight Nine of these wells were constructed to intercept the regional groundwater at a depth of approximately 250 feet below ground

í,

surface. The remaining six wells were constructed as "wet/dry" wells screened in the seasonal water table aquifer at a depth of approximately 70 feet below ground surface. These shallow wells are intended to provide early warning of leachate movement, if it should occur.

A 6-foot high chain link fence surrounds the site to control access to the facilities when landfill operations personnel are not present. The main access to the site is equipped with doublewide, locking gates. These gates are locked during nonworking hours. In addition, the stormwater/leachate evaporation pond is surrounded by a 6-foot high chain link fence and two doublewide, locking gates. The stormwater/leachate evaporation pond gates are locked unless landfill operations personnel are inside the fenced enclosure.

2.3.2 Landfill Equipment

The following equipment is maintained for use at the Bayview Landfill:

Equipment	Quantity	Size	Make/Model
Compactor, Landfill Blade	2	<u>120</u> ,000 lb.	Cat 823C
Scraper	2	22 cu. yd.	Cat 623E
Dozer	1		Cat D8R
Grader	1		John Deere
Water Truck	1	5,000 gal.	<u>CAT 613</u>
Pickup Truck	1	³ ⁄ ₄ ton	Ford 250
Pickup Truck	1	³ ⁄ ₄ ton	Dodge 2500

This equipment is sufficiently sized for operation of the Bayview Landfill. All equipment, with the exception of the pickup truck and fire truck, is required to have an OSHA-approved safety cab, a fire extinguisher, a first aid kit, and a backup alarm. Additional equipment may be purchased as existing equipment approaches the end of its useful life, or as operating conditions require.

2.3.3 Landfill Personnel

The following persons are responsible or available for on-site operations at the Bayview Landfill:

- District Manager. The District Manager is responsible for: planning, design, and construction of the landfill facilities; overall operation of the solid waste management system, including the landfill; and production of annual environmental and financial reports. The District Manager reports to the District's Board of Directors. The Landfill Foreman reports directly to the District Manager.
- Landfill <u>Supervisor</u>. The Landfill <u>Supervisor</u> is responsible for all day-to-day operations at the Bayview Landfill. He is responsible for: acceptance and placement of wastes at the landfill; routine inspection of the facilities for compliance with permit requirements; and coordination with the Transfer Station Foreman. The Landfill Foreman is a certified Manager of Landfill Operations with at least 10 years of professional experience related to landfill operations and earthwork. The Equipment Operator(s), Spotter/Laborer(s), and any visitors report directly to the Landfill Foreman.
- Equipment Operators. The Equipment Operator is responsible for: safe operation and daily maintenance of equipment; visual inspection of waste loads for unauthorized or hazardous wastes; and daily operations on the working face of the landfill. The Equipment Operators, with the exception of apprentices, typically have 2 years of professional experience related to landfill operations or earth work. As of July 2003, two of the operators have in excess of two years experience and a third is nearing completion of two years. The eurrent-apprentice operator has about one year-of experience. Equipment Operators have all received training on landfill operations within 2 years of employment. The Landfill Foreman may designate the Equipment Operator to act in his behalf in the foreman's absence.
- **Spotter/Laborer.** The Spotter/Laborer is responsible for: directing traffic to the working face; control of litter and dust generated from the landfilling operations; assistance to the Equipment Operators; and any other tasks assigned by the Landfill Foreman.

3.0 SCHEDULE OF FACILITIES CONSTRUCTION

۰.

5

Landfill Cell 1 - Stage 1, the first landfill half-cell, was excavated in 1988. The soils excavated from this half-cell were used to construct portions of the screening berms on the eastern and northern boundaries of the site. The geomembrane lining system for this half-cell was installed during the fall of 1989. Essentially, the construction consisted of: excavating the native soils, compacting the exposed soils to 95% of optimum density (Standard Proctor), installing a geotextile to cushion the overlying geomembrane from underlying soils, installing a 40-mil HDPE geomembrane liner, installing a geotextile to absorb side slope tensile stresses and to transmit leachate, and placing the protective soil cover. Provo City Corporation and design personnel (HDR Engineering, Inc.) provided construction quality assurance observation during the installation of the geosynthetics and during the placement of protective cover soils.

Stage 2 of Cell 1 was similarly constructed except that a 60-mil geomembrane was used. Cell 1 is nearing final waste grades, and closure is expected to occur in 2005.

Stage 1 of Cell 2 is anticipated to be constructed in early 2004 and is expected to last approximately 5 years. Soil excavation to be used as daily cover is ongoing in Cell 2, and select material will be used as final cover on Cell 1. A portion of this select material has already been stockpiled on-site.

As a general rule, landfill cells will be planned to be available no less than 3 months prior to the completion of filling in the operational cell. This will allow for construction delays due to weather, construction contractor difficulties, or other unanticipated delays. The design, permit review, and contractor negotiations will be planned to require approximately 1 year.

4.0 SOLID WASTE HANDLING

4.1 Waste Acceptance

All solid wastes entering the Bayview Landfill originate at the Springville Transfer Station or the City of Goshen Transfer Station. Wastes entering these transfer station facilities are pre-screened for unacceptable materials by transfer station personnel prior to compaction of the wastes. Operations at the transfer stations are not included in this landfill Operations Plan.

Private hauler and citizen self-hauled wastes are generally not accepted at the landfill. Occasionally special wastes will be received directly at the landfill after arrangement with the waste generator.

4.2 Waste Disposal

Transfer trailers entering the site will be directed by landfill operations personnel to the working face, where the driver will be instructed to discharge the load. Landfill operations personnel will push the solid waste up the working face using a compactor. The waste will be placed in lifts with a loose thickness of 2 - 3 feet. After the waste has been placed in loose lifts, the operator will run the compactor over all portions of the lift at least two times parallel with the slope (up slope), and at least one time across the slope. There may be times in operating the landfill when pushing uphill may be impractical or poor practice (i.e., when the first lift of waste is placed on protective cover soil.) Equipment operators will also maintain the working face so that it is as small as practical to allow for efficient unloading of transfer trucks, and placement and compaction of solid wastes.

4.3 Placement of Cover Soils

Cover soils or other approved material will be placed over solid wastes to minimize the potential for nuisance conditions, fire, and disease vector contact with solid wastes. Nuisance conditions include: odor generation and air discharges; blowing of plastic and paper wastes; and other conditions that impair the use of adjoining properties.

At the end of each working day, the landfill operations personnel will cover all solid wastes received during that day with daily cover. The daily cover will consist of a minimum of 6 inches of soil excavated from other portions of the landfill site. Daily cover will be placed to minimize the nuisance, fire, and disease vector potential attributable to each day's waste placement. On an infrequent basis, oversized wood chips that are generated from the composting operation

are used as an alternative daily cover. The landfill operators will record the time that this alternative daily cover is use and monitor its effectiveness. This type of daily cover would only be placed on Mondays through Thursdays. The standard 6 inches of onsite soils will be used on Fridays.

Whenever a portion of the landfill cell will remain in an inactive condition for an extended period, landfill operations personnel will place an intermediate cover over the inactive portion. The intermediate cover will reduce the potential for wind- and water-induced erosion of the cover, and reduce the production of leachate and contact stormwater within the landfill cell. The intermediate cover will consist of an additional 6-inches of soil.

5.0 INSPECTIONS, MONITORING, AND REPORTING

5.1 Inspections

٠.

1

The Landfill Foreman is responsible for conducting and recording routine inspections of landfill facilities. The schedule for conducting routine inspections is provided in Table S-1. Forms for recording routine inspections are presented in Appendix I.

The District Manager is responsible for verifying the completeness of the inspection records on a quarterly basis.

5.2 Groundwater Monitoring

5.2.1 Detection Monitoring

The District has completed the 2-year program to determine the background water quality in each of the 12 monitoring wells constructed at the landfill site. The 2-year program consisted of bi-monthly sampling of each well. During the first year, the District sampled each well every other month; during the second year, the District also sampled every other month, skipping one month so that each calendar month was sampled during the 2-year program. The results of the 2-year program are used as a baseline for each well, and subsequent groundwater

monitoring results for each well will be compared to this baseline data. Baseline data will be collected by 2 years of sampling following the construction of new wells.

The District will continue to conduct groundwater sampling on a semi-annual basis. The District Manager and the Landfill Foreman will coordinate the monitoring events, schedule the timing of groundwater sampling, sample or arrange for sampling of the wells, arrange for analysis of the groundwater samples, and arrange for interpretation of the analytical results. The groundwater samples will be analyzed for the constituents listed in UDEQ rules (R315-308-4) for detection monitoring. The semi-annual detection monitoring samples will be compared to the baseline data and to ongoing averages for each well to determine if the data is statistically different from either the baseline data or from ongoing average data for each well. If statistically significant increases are detected in the Detection Monitoring Program, the District will begin an Assessment Monitoring Program, as required by UDEQ rules. Appendix F contains the District's Groundwater Quality Report and Groundwater Monitoring Plan.

Landfill Facility	Inspection	Frequency
Landfill Cell	Daily and intermediate cover integrity. Stormwater and leachate collection (ponding).	Daily Daily
	Run-on/run-off control integrity. Cell perimeter fence integrity.	Daily Daily
Stormwater/Leachate Pond	Perimeter fence integrity. Water depth. Liner system integrity. Water volume.	Daily Weekly Weekly Quarterly
Other Appurtenances	Entrance/main gate integrity. Perimeter fence integrity. Monitoring well integrity. Equipment maintenance. Site road integrity. Berm integrity.	Daily Weekly Monthly Monthly Quarterly Quarterly

Table S-1:	Recommended	Frequency	of Inspection	of Landfill Facilities

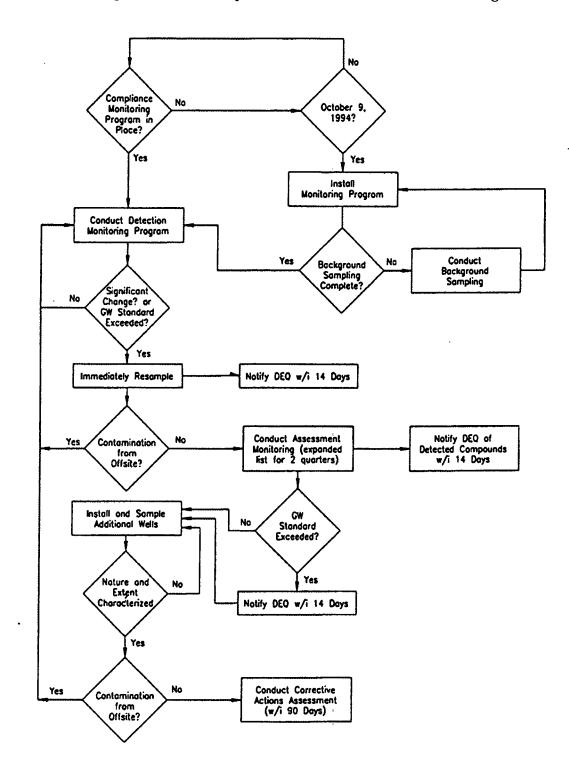
5.2.2 Assessment Monitoring

If a statistically significant increase in groundwater contaminants is detected as part of the Detection Monitoring Program, the District will initiate the following actions:

- Notify UDEQ in writing, within 14 days of obtaining laboratory results. The notification will include identification of the constituents that have shown a statistically significant increase.
- Enter the laboratory results into the operating record for the landfill.
- Immediately resample the groundwater in all wells, or a subset of the wells as specified by the Executive Secretary, for all constituents listed in R315-308-4. Determine whether a statistically significant change has occurred such that the groundwater protection has been compromised.
- Notify UDEQ within 7 days of receipt of the results of the resampling if a statistically significant change has occurred.

Figure S-1 summarizes the requirements imposed on the District by UDEQ regulations to define the nature and extent of groundwater contamination, and to take corrective action if the source of the groundwater contamination is the landfill.

5.3 Landfill Gas Monitoring


)

The District began a landfill gas monitoring program by conducting an initial surface survey for combustible gases, and by purchasing a combustible gas indicator (CGI). During the initial survey, no measurable combustible gases were detected on the site, and landfill gas monitoring stations were established for future monitoring events.

The District will continue to conduct combustible gas monitoring at the established stations on a quarterly basis. The District Manager and the Landfill Foreman will coordinate the gas monitoring events with groundwater monitoring events, and will arrange for interpretation of the monitoring results if combustible gases are detected at any station. If concentrations of combustible gasses exceed the standard set in the UDEQ Rules, the District will implement the requirements imposed on the District by UDEQ regulations in effect at the time of the permit or revisions of the permit.

-

· `1

Bayview Class I Landfill Permit Application South Utah Valley Solid Waste District

.

Revision 2 Appendix S

6.0 CONTINGENCY AND CORRECTIVE ACTION PLANS

The following sections describe the contingency and corrective action plans that will be implemented if fire, explosion, failure of run-off/run-on structures, release of explosive gases, or contamination of groundwater occurs.

6.1 Fire

No burning of wastes is planned in the active landfill cell area. Limited burning may be planned, permitted, and accomplished during clearing of new landfill cell construction areas, and perimeter fence and drainage channel maintenance. No other burning activities are planned at the Bayview Landfill.

Two other types of fires, fires in loaded vehicles and fires in disposed wastes, must be anticipated and response activities planned. Each of these is discussed below. The preferred method of fighting fires in the Bayview Landfill will consist of smothering the fire with soil. Water will contribute to the formation of leachate, and should only be used as a last resort if the fire cannot be smothered.

6.1.1 Loaded Vehicle Fires

In the event that a transport vehicle enters the landfill site carrying a burning or smoldering load of waste, landfill operations personnel will take the following actions:

- Direct the vehicle to a designated section of the landfill away from the working face. Direct the driver to deposit his load and to clear the area as quickly as possible.
- Immediately cover the burning waste with sufficient soil to completely smother the fire. Allow the waste to cool for several days, or longer if necessary.
- If necessary, spray equipment and the transfer vehicle with water to cool the equipment while working the fire. This will not be necessary if the equipment is pushing or dumping soil on the burning wastes in front of the advancing equipment.

- If landfill operations personnel cannot control the fire, the County Fire Marshall will be contacted.
- Notify the UDEQ immediately and provide written documentation within 14 days of the fire.

6.1.2 Working Face/Below Cover Fire

In the event of a working face fire or a fire below cover, landfill operations personnel will take the following actions:

- Evacuate all non-essential personnel from the area of the fire. Non-essential personnel would include transfer truck drivers, laborers/spotters, and visitors.
- Isolate the burning material from other wastes to the extent possible. Use compactor blades and dozers to move the burning materials away from other wastes; this may not be possible if the fire is below cover soil.
- Immediately cover the burning waste with sufficient soil to completely smother the fire. Allow the waste to cool for several days, or longer if necessary.
- If necessary, spray equipment and the transfer vehicle with water to cool the equipment while working the fire. This will not be necessary if the equipment is pushing or dumping soil on the burning wastes in front of the advancing equipment.
- If landfill operations personnel cannot control the fire, the County Fire Marshall will be contacted.
- Notify the UDEQ immediately and provide written documentation within 14 days of the fire.

6.2 Explosion

In the event that an explosion should occur at the landfill or in any structure associated with the landfill, landfill operations personnel will take the following actions:

• Immediately evacuate the area surrounding the explosion, including any adjacent buildings. Shut down and abandon any equipment near the explosion that is hot and may provide an ignition source for additional explosions.

- Account for all personnel. Contact the County Fire Marshall and the emergency dispatcher (911). Contact the District Manager.
- Restrict the explosion area to any entry until emergency response personnel clear the area.
- Notify the UDEQ immediately and provide written documentation within 14 days of the explosion.

6.3 Failure of Run-Off/Run-On Structures

Failure of run-off structures may allow the release of contaminated water into the environment. Failure of run-on structures may allow stormwater to mingle with and become leachate. Neither of these conditions is desirable.

6.3.1 Failure of Run-Off Structures

In the event that a failure of run-off structures is discovered during routine or non-routine inspections, landfill operations personnel will take the following actions:

- As soon as practical, suspend acceptance of wastes at the landfill, if necessary, and inform the transfer stations of this suspension.
- Use landfill compactor and dozer equipment to construct temporary berms to contain the run-off. Divert the flow of run-off water away from surface water drainage channels.
- Resume landfilling operations as soon as possible after the run-off is contained. Inspect the temporary berms as frequently as possible, but not less frequently than once every 2 hours.
- Assess the impact of the release of run-off as soon as practicable following the event. Assess the need for permanent improvements in the temporary berms, or other run-off control structures, as soon as practicable following control of the run-off.
- Notify the UDEQ immediately and provide written documentation within 14 days of the release event.

SHALL BELL

6.3.2 Failure of Run-On Structures

Failure of run-on control structures may temporarily overload the leachate collection system, but is generally less serious than failure of run-off control structures. In the event that failure of run-on control structures is discovered during routine or non-routine inspections, landfill operations personnel will take the following actions:

- Immediately mobilize landfill compactor or dozer equipment to construct temporary berms, swales, or other structures to temporarily divert surface water run-on from the active landfill cell. Assess the need to suspend acceptance of waste.
- Assess the need for permanent run-on control structures as soon as practicable.
- Notify the UDEQ immediately and provide written documentation within 14 days of the failure event.

6.4 Release of Explosive Gases

It is unlikely that a release of explosive gas will occur from the lined Bayview Landfill cells. However, it is possible that landfill gas concentrations will exceed the regulatory requirements in one or more gas monitoring locations. For purposes of this contingency plan, a release is defined as the detection of more than 25% of the lower explosive limit (LEL) in a landfill building, or more than 100% LEL at the property boundary. The LEL is 5% by volume of methane in air. If a release of explosive gases is detected, landfill operations personnel will take the following actions:

- Immediately suspend landfilling operations and determine if landfill personnel or structures are threatened. If so, personnel will be evacuated immediately, and building doors will be opened to allow gases to escape. Notify the transfer stations of the suspension of operations.
- As soon as possible, determine if off-site buildings or other structures are threatened. If so, immediately notify the County Fire Marshall.
- Monitor the release area, and all other landfill gas monitoring locations, until the emergency condition has been eliminated.

- Determine temporary corrective actions as soon as possible, and permanent corrective actions as soon as practicable, following detection of the release.
- Notify the UDEQ immediately and provide written documentation within 14 days of the release event.

6.5 Groundwater Contamination

Contingency and corrective actions following the detection of groundwater contamination are described in Figure S-1.

7.0 ALTERNATIVE WASTE HANDLING PROCEDURES

Landfill operations have been adapted for wet weather by constructing an all-weather, asphaltpaved roadway from the site entrance to the active cell. The site soils, including those used as daily cover, consist primarily of sands and gravels. In the semi-arid climate of the Bayview Landfill site, experience has shown that precipitation has little effect on the operation of the landfill, especially given the nature of the cover soils. The District does not believe that alternate waste handling plans are necessary for this site with respect to wet weather operations.

All reasonable caution and prudence will be exercised to not dispose of wastes during any unreasonable weather conditions. If unforeseen weather conditions occur, the District Manager, or his designee, will be informed and will coordinate any changes in operations. The District Manager will consider the system-wide requirements (including transfer station requirements) in determining what changes, if any, need to be made in operations at the landfill.

8.0 MONITORING EQUIPMENT MAINTENANCE

8.1 General

The inspection schedule for groundwater monitoring wells and landfill gas monitoring stations is presented in Section 5. This section describes the more detailed inspection and maintenance of these landfill structures.

8.2 Groundwater Monitoring Wells

All groundwater monitoring wells will be thoroughly inspected during each sampling event. The detailed inspection will note signs of deterioration or failure of the protective steel casing, the concrete pad and bollards, and the polyvinyl chloride (PVC) well casing and screen. If damage is discovered, the nature of the problem will be recorded and reported to the District Manager who will make a decision to repair, replace, or abandon the well. This decision will be documented in the operating record for the landfill, and the required actions will be completed prior to the next scheduled monitoring event.

The monitoring well locations will be maintained on a routine basis. Weeds will be removed at least every 6 months, approximately 2 weeks prior to each scheduled sampling event. During the weed removal, landfill personnel will note any obvious indications that the well has been damaged to allow the Landfill Foreman and the District Manager to assess the situation.

Bollards and well casing materials will be inspected during each sampling event to determine whether painting or other routine maintenance is required.

8.3 Gas Monitoring Locations

Gas monitoring locations will be maintained on a routine basis. Weeds will be removed from the vicinity of each monitoring location at least every 3 months, approximately 2 weeks prior to each scheduled sampling event.

9.0 DISEASE VECTOR CONTROL

For landfills in Utah, disease vectors essentially consist of rodents and birds. This section describes the methods that the Bayview Landfill personnel will use to control rodents and birds.

The primary method of rodent control is to eliminate conditions favorable for the reproduction of rodents through proper compaction of wastes and proper placement of daily cover. If landfill personnel observe the presence of rodents, more frequent application of cover soils will be considered.

If the primary method of rodent control does not produce satisfactory results, the District may employ poisoning. A poison control program must include the following conditions:

- Poison traps must be set by experienced, professional exterminators.
- Poison traps may only be set within areas with controlled access. This means that the trapped area must be within the site's security fencing, and the security gates must be locked for the duration of the poisoning program whenever landfill personnel are not on-site.
- Occupational Health and Safety Administration (OSHA) requires warning signs of acceptable color and size to be permanently fixed to the outside of the access gate and fencing, at spacings not to exceed 150 feet, for the duration of the poisoning program. A minimum of one sign per side of the fence is required.
- Landfill personnel must conduct a daily inspection of each poison trap, and notify the professional exterminator if disruptions of any traps are noted.
- The professional exterminator must conduct periodic inspections of the poison traps.
- Written documentation of the poisoning program must be maintained at the maintenance building. The documentation must include: the number and exact location(s) of the poison traps; the name of the poison(s) (including both chemical and brand name, and a listing of ingredients); the quantity of poison contained in each trap; and the medically accepted antidotes or treatments for the poison(s).
- The professional exterminator must submit monthly reports to the District Manager documenting the status of the poisoning program. The reports shall include the number and location of traps, the quantities of poison(s) used during the past month, and any changes in the program instituted during the past month.

• Poison supplies shall be stored on-site in a separate, locked, and properly labeled enclosure. Access to the poison shall be restricted to the professional exterminator and the Landfill Foreman, or his designee.

9.2 Bird Control

As with rodent control, the primary method of controlling birds is to control the conditions favorable to their existence. The following methods will be used as needed:

- Minimizing the size of the working face. This is the most effective method of controlling birds since it reduces the area available for feeding. More frequent cover and higher degrees of compaction of the wastes may also serve to minimize the opportunities for feeding.
- Minimizing the accumulation of water in depressions, ponds, or other features near the active working face. The lack of water makes a landfill a less attractive feeding area for birds.
- Use of noise or other frightening techniques. These techniques offer short-term reductions in the numbers of birds feeding at a landfill.

If the primary methods do not produce satisfactory results, a destructive method of control may need to be implemented. Destructive methods may cause harm or death to some birds, and authorization must be obtained from local officials prior to implementing a destructive program.

10.0 WASTE SCREENING

The primary location for screening of wastes will be the transfer stations. All transfer station personnel will receive periodic training in detecting wastes that are prohibited for disposal at the landfill. This training will consist of an initial training and annual refresher training. These personnel will conduct routine inspections and random load inspections as specified in the operations plan for the transfer stations.

The landfill equipment operators will also receive periodic training in detecting prohibited wastes. This training will consist of an initial training and annual refresher training; however, the landfill operational personnel will provide secondary waste screening only.

11.0 RECYCLING

The primary location for recycling will be the transfer stations. These locations are best suited for separating recyclable materials, and separation will be difficult or impossible after the wastes have been compacted and loaded into over-the-road trucks. The landfill operations personnel may segregate tires, large and bulky wooden wastes, and similar materials upon receipt at the landfill; however, this recycling activity is considered secondary to recycling at the transfer stations.

12.0 COMPOSTING

A compost program utilizing yard waste and biosolids is proposed for the Bayview Landfill. A plan of operations and permission to implement the compost operations has been submitted under separate cover. A copy of the Plan of Operations is included with this Permit Application as Appendix R.

Colud	D	lvision of	1
2010	and	Hazardous	Waste

FEB 27 2013 2013-002106

Bayview Landfill Master Plan

SUVSWD Bayview Class 1 Landfill

Prepared for:

South Utah Valley Solid Waste District Springville, Utah

Prepared by:

RT Sprague Consulting, LLC 537 Coventry Lane Louisville, CO 80027

January 2013

- .

.

3

Table of Contents

<u>Secti</u>	<u>on</u>	Title	<u>Page</u>
1.0		Introduction	3
2.0		Landfill Considerations	3
	2,1	Assumptions	4
	2.2	Cell 1 Status	5
	2.3	Cell 2 Volumetrics and Phasing	5
	2.4	Cell 3 Volumetrics and Phasing	6
	2.5	Other Design Features	7
3.0		Conclusions and Recommendations	11
4.0		References	11

Attachments

۰ ·

Attachment 1 – Cell 2 Volume and Operating Life Calculations Attachment 2 – Cell 2 Drawings Attachment 3 – Cell 3 Volume and Operating Life Calculations

1.0 INTRODUCTION

The South Utah Valley Solid Waste District (SUVSWD or the District) was formed in 1989 to own and operate municipal solid waste (MSW) management facilities for the cities of Provo, Salem, Spanish Fork, Springville and Mapleton, Utah. Subsequently, Goshen, Brigham Young University and Woodland Hills joined the District. The District assumed previously permitted and designed or constructed solid waste facilities, including the Bayview Landfill and Springville Transfer Station, from the City of Provo. Figure 1 shows the locations of the Bayview Landfill and the Springville Transfer Station in relationship to member cities. Goshen City owns and operates its own transfer station.

This document is the fourth version of the Bayview Landfill Master Plan. The previous versions include:

- The original master plan, which was created in 1988 to guide development of the 660 acre Bayview Landfill, envisioned seven individual landfill cells each encompassing from 40 to 60 acres and providing more than 50 years of useful landfill life. It developed concepts still in use today, including property boundary earthen berms to restrict sight of landfill cells from adjacent roadways and properties, controlled access and exclusion of uncompacted wastes. This master plan was approved by the Utah County Board of Commissioners and was included as an appendix to the 1993 Bayview Landfill Permit Application.
- The 2002 master plan revision evaluated two fundamental changes from the original plan's concepts for the Bayview Landfill cells north of the landfill access road. These changes were aimed at increasing the useful life of the landfill and included: combining cells 2 and 3 by removing the earthen berm between these cells; and increasing the excavation depths in this cell (now designated as cell 2).
- The 2009 revision added a second leachate sump, modified landfill bottom grades in minor ways and added a new leachate collection system and evaporation pond.

2.0 LANDFILL CONSIDERATIONS

The 2009 master plan updated the status of Cell 2; the current (2012) Master Plan updates the status of all phases of the Bayview Landfill. In doing so, the current Master Plan provides a road map for future development of the entire site. For ease of understanding, the Design Considerations will be subdivided into several subsections, including: design assumptions; Cell 1 status; Cell 2 status, volumetrics and phasing; Cell 3 volumetrics and phasing; and design features outside of planned landfill cells.

2.1. Assumptions

Since this 2012 Bayview Landfill Master Plan modifies assumptions made in earlier versions, the current assumptions are described in bullets, which are followed by a discussion of the changes. Our 2012 assumptions, which will be used for the completion of Cell 2, include:

- An in-place waste density of 1,500 pounds per cubic yard (lbs/cy);
- An in-place waste to soil ratio of 20% consisting of:
 - An in-place waste to daily and intermediate cover soil of 10%; and,
 - An in-place waste to liner protection layer and final closure cap soil of 10%;
- A waste tonnage increase of 1%.

The 2009 master plan also assumed an in-place waste density of 1,500 lbs/cy. This density seems to be conservative since survey data consistently indicate an actual in-place density of 1,600 to 1,700 lbs/cy, or approximately 10 percent to the conservative side. The 2009 master plan assumed an in-place waste to daily and intermediate cover soil ratio of 20 percent, and added the closure cap soil to this for a 25 percent waste-to-soil ratio. Bayview Landfill has been using an alternate daily cover (Posi-shell) combined with weekly soil cover for most of the life of Cell 2. Survey data for Cell 2 indicate that the ratio of daily and intermediate cover soil is approximately 9 percent. The liner protection layer and final closure cap will consume another 9 percent of Cell 2, so a total of 20 percent waste-to-soil ratio is approximately 10 percent conservative.

The 2009 master plan assumed that the annual waste increase would be approximately 3 percent based on a comparison of 1991-2 and 2008-9 tonnages. This comparison did not anticipate the depth and breadth of the effects of the "Great Recession" on waste production, primarily because these effects were just beginning to be apparent in Utah in 2009. If we compare the 1991-2 to 2011-2 tonnages, the annual waste increase is almost exactly 1 percent. Added to this trend, the public (both in Utah and the U.S. as a whole) is demanding an increasing rate of diversion from disposal. This demand includes diversion of residential, commercial and construction debris (C&D) wastes, which together will tend to decrease waste disposal as the effects of the recession recede. Many leaders in the waste industry are foreseeing a time in the not-too-distant future when the growth of diversion and the growth of disposal will cross and diversion will begin to dominate (see further discussion in Attachment 3). In any case, the Trans-Jordan Landfill is also projecting an annual waste increase of 1 percent, so this assumption is consistent with at least one other major Utah landfill.

2.2. Cell 1 Status

Cell 1 was active from 1991 until 2005; it was capped during 2005 through 2008, when it began its 30-year post-closure care period. It contained approximately 1,800,000 tons of MSW at the time of its closure.

2.3. Cell 2 Volumetrics and Phasing

Cell 2 (formerly Cells 2 and 3, modified by the 2009 master plan) was divided into several stages of development in the earlier master planning documents. Stage 1 began accepting waste in 2005 and Stage 2 began accepting waste in 2010. This master plan includes a discussion of the history of several factors in Cell 2 because these factors will become important in the final design of Stages 3 and 4, as well as in final closure of Cell 2. This discussion is particularly important since final closure of Cell 2 will occur some three or four decades in the future.

Important historical information and changes from the 2009 master plan for Cell 2 include the following:

- Stage 2 was constructed early to mitigate uncontrolled movement of waste in Stage 1 during a seismic event. A reverse grade buttress was constructed east of Stage 1, which resulted in construction of separate leachate collection sumps for Stages 1 & 2. This may affect the final design of Stage 3 to the extent of planning for leachate removal from these two sumps. In particular, the Stage 1 sump will need to be retrofitted with a drainage path, or continue to be pumped; and the Stage 2 sump will need to be designed to drain into Stage 3, or continue to be pumped.
- The 2009 master plan envisioned a central leachate collection drainage and sump in Stage 3; this master plan envisions drainage of Stage 3 to the northeast corner to allow continued use of the double-containment leachate pipe on the northern side of Cell 2 as a conduit to the leachate collection and evaporation pond. This orientation may require design of an intermediate leachate collection pipe midway across the north/south cross section of Stage 3 to prevent excessive head on the liner system. This design detail envisions a minor trench and/or berm to divert leachate into the leachate collection pipe.
- This master plan envisions increasing the elevation of the final cap centerline to increase the useful life of Cell 2. Since the site has excess spoil from excavation, it will be difficult to extend the excavation depth (each foot of excavation creates some 60,000 cy of spoil soil for disposal); however, the capped elevation could be increased from the 2009 master plan, using some of the spoil soil for daily and intermediate cover. The current plan shows an increase in elevation of 15 feet (approximately two lifts) at the western end, and 30 feet at the eastern end of Cell

2, yielding a volume increase of approximately 1.5 million cy and extending Cell 2 life some four to five years.

- As a practical matter, closure of Stages 1 & 2 should occur during filling of Stage 3; this should reduce the quantity of leachate produced in Stages 1 & 2 attributable to heavy storms.
- Stage 3 excavation has begun, and Stage 4 excavation will begin during the 2022-3 fiscal year to maximize use of this excavation material as daily cover in Stage 3.
- Stage 3 excavation is estimated to require one FTE (10 hours per day including breaks and maintenance time, 5 days per week, 50 weeks per year) for seven years (2012-3 through 2019-20). This corresponds with the timing of liner construction during the 2020-1 fiscal year (see Attachment 1).

Table 2-1 below provides a summary of the capacity and phasing of Cells 1 & 2; capacity and phasing of Cell 3 are discussed in the next section.

Cell and Stage	Waste Capacity (tons)*	Status		
Cell 1	1,800,000	Post-closure care		
Cell 2 – Stage 1 & 2	2,270,000	Currently receiving waste		
Cell 2 – Stage 3	2,300,000	Currently in excavation		
Cell 2 – Stage 4	2,160,000	Excavation begins in 2022		
Total	8,530,000	Begins closure in 2050±		
*All assumptions apply.				

Table 2-1. Summary of Capacity and Phasing of Cells 1 & 2.

Spreadsheet calculations of waste volume consumption supporting Table 2-1are presented in Attachment 1, and plan and cross section drawings of Cell 2 are presented in Attachment 2.

2.4. Cell 3 Volumetrics and Phasing

Cell 2 completion is projected to occur during the 2050 timeframe. This is so far in the future that almost any assumption for Cell 3 is likely to be in error, with only the magnitude of the error in question. Still, SUVSWD is considering accepting waste from other public agencies, and requested an estimate of the future life of Cell 3. This estimate was completed earlier in 2012 and is attached in Attachment 3; this study is summarized in the following paragraphs.

To project the capacity and life of Cell 3, two assumptions were made. The first assumption is that the four cells shown in previous master plans (Cells 4 through7) have transformed into a single large area fill with stages similar to Cell 2. The second assumption is that the annual increase in tonnage will be zero percent – no growth in tonnage. Other assumptions are identical to those for Cell 2: 1,500 lbs/cy for in-place

.

waste; 20 percent for the in-place waste-to-soil ratio; and an average elevation difference (bottom of excavation to top of closure cap) of 110 feet.

Using these assumptions, the life of Cell 3 was estimated at 88 to 104 years. Since Cell 3 is projected to begin accepting waste in 2050, this means it has capacity through 2140 or 2150 accepting only MSW from SUVSWD. If SUVSWD were able to immediately double the tonnage received at Bayview by adding one or more out-of-District customers, Bayview would have 65 to 75 years of capacity without further increasing the capacity of Cell 3.

2.5. Other Design Features

,

2.5.1. Stormwater Management

The Bayview Landfill site lies between the Tintic Mountains and Utah Lake. Three historic unnamed drainages cross the site from west to east, including: a drainage near the northern boundary of the site; a drainage near the center of the site, just south of the landfill entrance road; and a drainage near the southern boundary of the site. Two of these drainages need evaluation for improvements in the short term (2 to 10 years), and the third will need evaluation during design of Cell 3 (during the 2040s).

The northern drainage was improved during design and construction of Cell 2, Stage 2. These improvements created a straight channel some 1,000 feet in length. This channel needs engineering evaluation for three potential design improvements, including:

- During a design runoff event, the long, straight channel may be at risk of bottom scour, embankment erosion and erosion or overtopping at the bend near the leachate ponds. This may require design and construction of drop structures and/or energy dissipation structures in the channel.
- The design improvements built during Cell 2 construction include single 36inch diameter culverts at internal landfill haul roads. In contrast, this drainage exits the landfill site through a single 24-inch culvert at Highway 68. During a design runoff event, this configuration may present risk of overtopping and/or washout of Highway 68. Alternatives which further control runoff onsite should be evaluated during renewal of the Bayview Landfill Stormwater Permit in 2013.
- Staff is recommending enlargement of the compost pad to accommodate additional biosolids composting. The likely area for this enlargement could require burial of the northern drainage channel. This also should be evaluated during renewal of the stormwater permit in 2013.

The central drainage has been partially or completely blocked by construction of site berms and haul roads. This does not create an immediate flooding problem, but may affect off-site water rights, since the stormwater simply impounds upgradient of the blockage. This impounded water evaporates or infiltrates into the ground to augment groundwater, which may mitigate water rights issues. However, this channel needs engineering evaluation for two potential design improvements, including:

- This channel is blocked by a saddle between a site berm paralleling the entrance road and a site berm paralleling Highway 68. If it is improved in this configuration, it may lessen the area available for future development of Cell 3, and it may present erosion issues for the embankments surrounding Cell 3. This drainage channel should be evaluated for relocation along the south side of the landfill entrance road.
- This channel also exits the landfill site through a 24-inch culvert under Highway 68. It should be evaluated for further on-site control before it is relocated.

The southern drainage currently becomes an alluvial fan as the channel disappears. This appears to be a natural feature, but may have been altered during site work. In any case, the stormwater either infiltrates into the ground or re-enters the drainage further east through overland flow. This channel will eventually need improvements, including:

- This channel will need to be re-located close to the site's southern boundary to allow construction of Cell 3. It will be most logical to make these design improvements, including drop structures and/or energy dissipation structures, immediately prior to opening Cell 3.
- This channel also exits the landfill site through a 24-inch culvert under Highway 68, and should be evaluated for further on-site control as part of its relocation design.

2.5.2. Soil Balance

Beginning with the first Bayview Landfill Master Plan (1989), the landfill was planned as an excess soil site. In the 1989 master plan, the excess soil was used to construct soil berms that would limit the visibility of landfill activities to traffic on Highway 68, as well as to neighboring property owners. The 2002 and 2009 revisions of the master plan increased the ratio of excess soil to the area of the cells by increasing the depth of Cell 2 compared to Cell 1. This excess of soil may impact future development of Cell 3, and the following paragraphs provide recommendations for new and continued practices to protect the value of future air space at the Bayview Landfill.

Soil Stockpile Areas

. .

Landfill staff have been stockpiling selected soil materials in several locations around the site. These stockpiles have included materials that staff or contractors may need to construct future landfill cells, or to construct future landfill closure caps; these materials include: silty sand to be used for closure cap construction (currently in the northwest corner of the landfill site); and clayey soil (hard pan) to be used in construction of future landfill cells (also in the northwest corner of the site). Staff has also been stockpiling other select materials in berm areas as it is feasible; these materials include sand, gravel and cobbles. Staff is currently designating all of these stockpile areas on the site-wide drawing of the Bayview Landfill so that these locations are available for future landfill staff.

While the stockpiling of silty and clayey materials in the northwest corner is beneficial, it should be augmented with stockpiles in the eastern portion of the landfill site. Doing this will reduce the haul distances during excavation, thereby improving excavation efficiency. It will also increase efficiency during construction of new landfill liner and closure caps, since it will also reduce haul distances for these construction projects. Staff is currently designating areas along the northeastern side of the landfill site for stockpiling silty and clayey materials.

It is recommended that staff continually update site drawings to show stockpile areas of all select materials, to show new areas as the older areas become full, and to use the drawings to help educate equipment operators on proper laydown of select materials. The site superintendent and management should verify these procedures on a regular basis; this should include a quarterly verification by management.

Site Berms

The site berms were initially developed to provide line-of-sight screening of landfill operations from traffic on Highway 68 and from neighboring land owners. The 1989 master plan established minimum elevations for the screening berms, and these elevations could be increased to provide for additional laydown/disposal of excavation soils. In addition, the berms were initially established to delineate the outer buffer around the landfill. They also delineate the inner boundary, and the outer boundary could be available for additional disposal of excavation soils.

It is recommended that staff survey new screening berm limits to end approximately 50 feet from the property fence; in doing this, staff should provide bollards around all groundwater monitoring wells, and provide at least 25 feet of undisturbed buffer around all monitoring wells. Extending the berms closer to property fences will allow additional acreage for the berms, which will make elevation increases more

meaningful in terms of volume. It is also recommended that the elevation of the berms near Cell 2 be increased by at least 10 feet.

Soil Re-Use

.

In the short term, SUVSWD will be able to expand the screening berms on the eastern boundary of the site. To a lesser degree it will be able to expand the northern and southern berms; the northern berm may be expanded vertically, but its lateral extent is severely limited by the proximity of property line, drainage channel and Cell 2 boundaries; the southern berm may be expanded to a much greater extent, but the 2,000 foot one-way haul would increase scaper cycle time to a marginally acceptable or unacceptable limit. Berm 6 (the eastern and southern berm south of the entrance road) can be used to dispose of 4 to 4.5 years of excavation from Cell 2 Stage 3 (note: excavation needs to be completed in 6 to 7 years). By fiscal year 2016 - 17, SUVSWD will need to have another disposal option available. That alternative may be among the following:

- Dispose of excavation soils in areas that will impact the future development of Cell 3. This will either reduce the capacity of Cell 3, or will require second handling of the disposed soil;
- Implement an off-site soil disposal option (see below); or,
- Develop a plan to place additional fill on top of Cell 1, between Cells 1 & 2, on top of Cell 2, on the current compost area, and in other areas which will not become part of Cell 3. If the compost area is used for soil disposal, SUVSWD could design and construct a new compost area on top of closed cells, or on top of fill between the two closed cells.

Ultimately, SUVSWD will need an off-site disposal of soil to maximize the development of air space on the Bayview Landfill. Cell 2 Stage 4 and all stages of Cell 3 will require off-site disposal of excess soil, tying the need to develop solutions to this issue to initiation of excavation of Cell 2 Stage 4 in 2020 at the latest. The most obvious alternatives include the following:

- Acquiring or leasing adjacent property for disposal of clean soil. SUVSWD could approach the School Trust Board regarding a lease of the property west of the current Bayview Landfill site. Only the eastern half of this section has value to SUVSWD since the section is divided approximately in half by north/south power utility easements. Alternatively, SUVSWD could approach property owners to the north or south of the current Bayview Landfill site.
- Development of off-site soil materials markets. This could consist of marketing soil materials in competition with private companies, or formation of a public/private partnership with a firm(s) interested in excavating Cell 3 in

exchange for rights to market selected materials. The second alternative is more likely to be easily implemented, and could involve a competitive bid process to secure a private partner.

In any case, this issue does become critical to further development of the Bayview Landfill by 2020 at the latest.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Using updated assumptions based on 20 years of history and a modified cell configuration, Cell 2 has a projected lifetime capacity sufficient to serve SUVSWD through the 2050 calendar year. Cell 3 appears to have a projected lifetime capacity to serve SUVSWD through the 2140 or 2150 timeframe. Each of these projections should be updated annually, and re-evaluated with regard to assumptions at least every 10 years (every second permit renewal).

Since excavation of Cell 2 Stage 3 will require one FTE for the next seven years, it will be most cost effective for SUVSWD to dedicate one person and one excavator to this task from today through the end of 2020.

During the 2013 to 2020 timeframe, SUVSWD will need to implement off-site disposal of excavated soils. Continuing to define areas for disposal of select soils may make it easier for a public/private partnership to develop, since the private contractor may be able to begin operation by mining stockpiled materials.

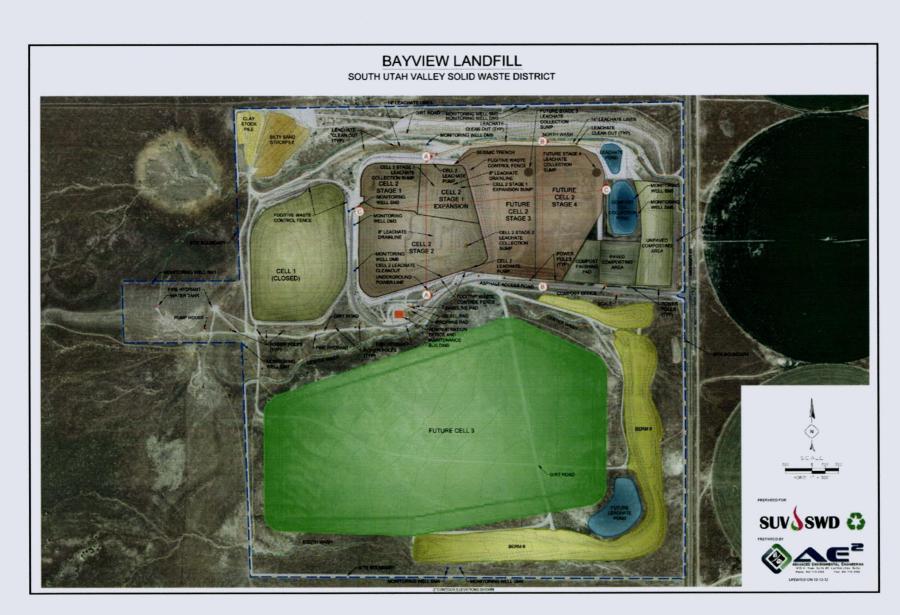
4.0 REFERENCES

Previous versions of the Bayview Landfill Master Plan are available through request to SUVSWD. These include the 1988, 2002 and 2009 master plans.

ATTACHMENT 1

Cell 2 Volume and Operating Life Calculations

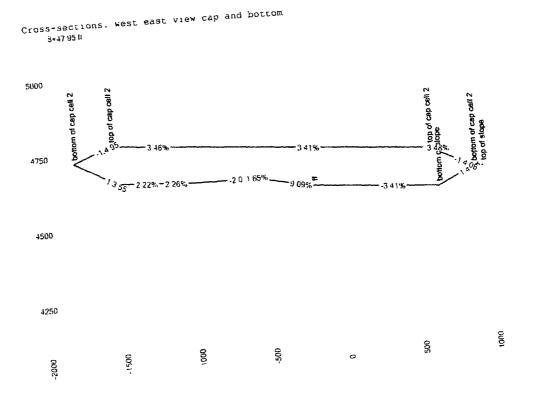
Baydow Landiil												
Cell 2 Remaining	; Vokumi											
Assumptions:	135.000 8444	aar waar 2011-12		121,000								
An an a state of the state of t	1% annual gro			101.0%								
		ali ratio (Including sa	فمدد انعداده	210%								
	\$1 0000 0 1 \$1	Daily cover	أراد مددمه	10%	Based on survey							
	***	the cover and o	<u>م</u>	10%								
	1 500	ar a yi canpedia		0.75								
	Annual				Becades.	Outpendather	Annual	Created at the				
	MISH	Ormandation	Annual MOM	Our result from	Daily Cover	Daily Cover	Almonce	Almonte	Bernelnine .			Added
Year	Becalvad	MSW Incohend	Volume	MSM Volume	Volume	Volume	Computed	Computed Inc	Altonete (cu	Remaining.		Ainpice
(7/1 - 4/30)	(1001)	(toes)	(ca yd)	(by wd)	(ca yel)	fbr oli	(cu yal)	yd)	¥4	Life (ym)	Stage	(cu y4)
							<u> </u>		1.980.835		1	
2012-13	122,210	122,210	162.847	162,947	16.285	16,295	179.241	179,341	1.801.594	14.7	2	
2013 - 14	123.482	245.642	164.576	327.523	15,458	32,752	181,084	360.275	1.620.560	131	2	
2014 - 15	124,666	170,305	166.322	493,745	16.622	48.374	181,894	543.119	1,437,716	11.5	2	
2015 - 16	125,913	436.222	167,884	651,629	16,788	66.163	184.673	727,792	1,253,044	10.0	2	
2016 - 17	127,172	623.394	169,563	831,182	16,956	43,119	165.519	914,911	1066.525	8.4	2	
2017 - 18	125,444	751,618	171,259	1,002,450	17,128	100,245	183,384	1,102,695	878,140	6.8	2	
2018 - 19	121.728	881.566	172.971	1.175.422	17.297	117.542	190,268	1,292,964	687.672	53	2	
2019-20	131.026	1.012.592	174,701	1 150 122	17.470	185.012	192.171	1465.135	495.701	3.8	2	
2020 - 21	132,336	1.145.920	176.448	1.526.570	17.645	152,657	194,093	1,679,227	1,771,115	28.5	2	3,855,008
2021 - 22	133.659	1.278.587	176,212	1.304.783	17.621	170.478	196,094	1.875.261	3,575,082	26.7	2	
2022 - 23	134,995	1413.583	173,994	1.894.777	17,999	188,478	197,994	2,073,255	3,377,088	350	3	
2023 - 24	136,346	1,545,915	121,784	2,066,572	18.179	205,657	199.974	2,273,229	3,177,114	23,5	3	
2024 - 25	137,709	1,647,638	183,812	2,250,184	19,361	225,018	201,974	2,475,202	2,975,140	21.6	3	
2025 26	139,026	1,826,724	185,449	2,435,632	18,545	243,563	201,993	2,679,196	2,771,147	13.8	9	
2026 - 27	140,477	1,957,207	147,303	2,622,935	18,730	262,294	206,083	2,685,229	2565.114	18.3	3	
2027 - 28	141,882	2,105,094	183,176	2,612,111	18,918	281,211	208,094	1093,125	2,357,020	16.6	3	
2028 - 29	143,301	2,252,584	191,058	1000,179	19,107	300,313	210,175	3,303,497	2,146,845	15.0	3	
2029 - 20	144,734	2,317,118	192,978	3,196,158	13,298	319,616	212,276	3,515,774	1,994,569	13.4	3	
2050 - 31	146,181	2,543,299	191,908	3,391,066	19,491	339,107	214,399	3,730,173	1,720,170	11.6	9	
2031 - 32	147,643	2,680,942	196,957	3,587,823	19,686	356,792	215,543	3,046,716	1,503,627	10.2	3	
2092 - 33	143,119	2,840,062	198,825	3,765,749	19,003	378,675	218,708	4,165,434	1,254,919	8.6	3	
2033 - 34	150,611	2,990,673	200,914	3,967,563	20,061	334,756	220,446	4,386,320	1,054,023	7.1	3	
2094 - 35	152,117	3,142,720	202,622	4,190,585	20,282	419,099	223,105	4,609,434	840,918	5,5	3	
2095 - 35	163,638	3,296,427	206,951	4,995,236	20,425	439,524	225.356	4,834,760	615,583	4.8	3	
2036 - 37	155,174	3,451,601	206,899	4,602,135	20,690	460,214	227,589	5,062,943	3,208,613	207	3	2,969,283
2037 - 58	156,726	3,608,327	208,968	4,611,103	20,697	461,110	229,865	5,292,214	2,978,948	19,0	4	
2058 - 39	169,293	3,766,621	211,059	5,022,161	21,106	502,216	232,163	5,524,377	2,746,785	17,4	4	
2009 - 40	153,676	3,925,497	213,169	5,235,329	21,317	523,593	284,495	5,758,662	2,512,299	15.7	4	
2040 - 41	161,475	4,057,972	215,300	5,450,628	21,530	545,063	236,880	5,995,692	2,275,469	14.1	4	
2041 - 42	163,090	4,251,062	217, 453	5,668,082	21,345	566,804	239,199	6,234,890	2,096,271	125	4	
2042 - 43	164,721	4,415,782	219,627	5,887,718	21,963	588,771	241,530	6,436,421	1,704,681	10.3	4	
2043 - 44	166,968	4,562,150	221,834	6,109,533	22,182	610,953	344,006	6,720,487	1,550,675	1.1	4	
2044 - 45	168,032	4,750,182	226,062	6,533,575	22,404	633,358	246,446	6,966,933	1,301,229	7.8	4	
2045 - 46	163,712	4,919,093	228,282	6,559,958	22,629	655,584	248,911	7,215,844	1,055,318	6.2	4	
2046 - 47	171,409	5,091,302	226,545	6,788,403	22,655	678,940	251,480	7,467,343	203,912	4.7	4	
2047 - 48	173,123	5,264,425	230,831	7,013,234	23,088	701,923	253,914	7,721,157	550,004	9 <u>9</u>	4	
2048 - 49	174,854	5,438,280	233,139	7,252,373	23,314	725,297	256,463	7,977,610	283,552	1.7	4	
2048 - 50	176,603	5,615,882	235,470	7,467,943	23,547	348,784	255,017	6,236,627	M,SM	62	4	


-

•

ATTACHMENT 2

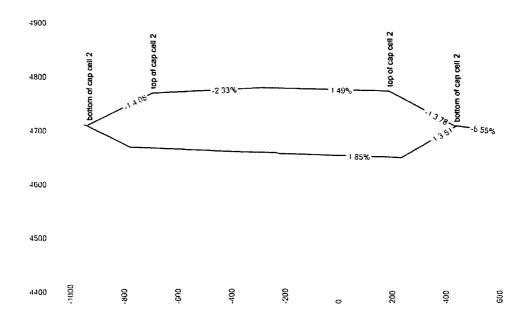
Cell 2 Drawings


4, Y

Bayview Landfill Master Plan

January 2013

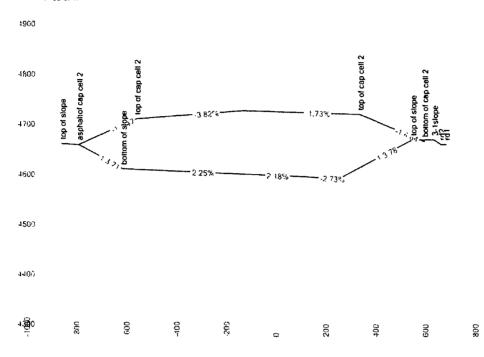
Page 14



Bayview Landfill Master Plan

~

Page 15


1

Cross-sections: south to north cross section cell 2 total $_{\rm 500C}$ $^{\rm 22\pm15.47\,\%}$

٠

.

Cross-sections: south to north cross section cell 2 total $7{+}65{-}69{\rm \ ft}$

•

ATTACHMENT 3

Cell 3 Volume and Operating Life Calculations

,

Letter Report Bayview Landfill Capacity and Alternatives Study

January 5, 2012

Mr. Terry Ficklin, General Manager South Utah Valley Solid Waste District P.O. Box 507 Springville, UT 84663

Delivered via email

Subject: Planning Level Estimates for the Bayview Landfill

Dear Mr. Ficklin:

This letter report is submitted to partially fulfill the requirements of our contract for professional services executed on November 15, 2011. This letter report provides my best estimate of the planning life for the Bayview Landfill. It also provides information regarding the relative costs of landfill disposal compared to other options for waste disposal. Throughout this letter report, I provide my best estimate of South Utah Valley Solid Waste District's (the District) disposal capacity of its wastes as defined by the District boundaries. I also estimate the site life with several different amounts of North Pointe Solid Waste Special Service District's (North Pointe) municipal solid waste (MSW).

To reiterate for your Board of Directors, I have been involved in the District's projects since the fall of 1989, and had been either Project Manager or Project Principal on these projects from 1992 through 2009 when I retired from HDR Engineering. So I know the District extremely well.

I worked together with the District's CAD Technician, Don (Fuzzy) Perry to refine my "back of envelope" estimate of the volume of waste that can be disposed of in the Bayview Landfill. I have completed this type of estimate more than a dozen times using "back of the envelope" estimates; while these estimates are inexact on small scale drawings, Mr. Perry helped me immensely in providing accurately scaled and calculated estimates.

Landfill Capacity

HDR's original (1989) Bayview Master Plan provided details on development of the 660 acres of the site leased from the State Board of Education. This site was approved by the Utah County Board of Commissioners as a Special Use Permit with more than 20 Conditional Use Provisions (attached).

The original Bayview Master Plan included seven isolated landfill cells, with the first cell located in the northwest corner of the site. While Cell 1 conformed to the original Master Plan, cells 2 & 3 were combined into a single cell under an early 2000s revision of the Master Plan, which was approved by the Utah Department of Environmental Quality (UDEQ). According to HDR's 2009 revision of the Bayview Landfill Master Plan, cells 2 & 3 have a lifetime volume lasting until 2033. Recent communication with UDEQ has increased the maximum height of cells 2 & 3 by 10 feet, increasing the life by 2 to 6 years. Cells 4 through 7 have not changed in concept since the original 1989 Master Plan.

In HDR's 1989 Master Plan, Cells 4 through 7 were envisioned as individual and isolated cells. This makes sense from a perspective of isolating closed cells and beginning a 30-year post-closure care for a landfill cell as proscribed by the US EPA and Utah DEQ regulations; unfortunately, we have learned that a 30-year post-

closure care period is not realistic, especially in the arid west, and may extend to perpetual care. If a landfill owner amortizes for a more realistic 100-year post-closure care, this becomes essentially perpetual care.

Combining Cells 4 through 7 adds an additional volume to these cells; this increase in volume could translate to more than a 30 percent increase in capacity, simply because side slopes and areas between cells add a large volume. Meanwhile, perpetual maintenance costs remain constant for this portion of the property.

We used both "back of envelope" and AutoCAD estimates to determine the volumetric capacity of the Bayview Landfill. My original "back of envelope" estimates were based on rough estimates of dimensions from HDR's most recent Bayview Master Plan (dated 2009). These estimates were extremely rough due to scaling factors: the width of my pencil line was roughly 50 feet when opposite sides are considered. In addition to the small scale of this sketch, it was not to a convenient scale, and I had to estimate dimensions. Working together, Mr. Perry and I refined these estimates using accurate and scaled AutoCAD drawings provided to the District by HDR.

My "back of envelope" calculation yielded a volume of 24,790,000 cubic yards, while Mr. Perry's AutoCAD drawing yielded a volume of 24,640,000 cubic yards. Since the AutoCAD calculation is considerably more accurate, we will use 24,640,000 cubic yards as our basis for calculating site life. From this volume, we must subtract the volume of soil used as daily and intermediate cover (Note: intermediate cover is placed when an area of the landfill cell will not receive more solid waste for a period of months). The industry routinely uses 20 percent as an estimate of the volume of daily and intermediate soil cover (Note: final cover is calculated separately since the type and thickness of final cover varies among the states). When we subtract 20 percent of 24,640,000, we obtain 19,710,000 cubic yards of air space available for MSW. And applying an in-place density of 1,500 pounds (3/4 of a ton) of solid waste per cubic yard gives us 14,780,000 tons of MSW. It is important to note that several assumptions in these calculations are conservative, including: the soil-to-waste ratio (20 percent) is quite conservative since many landfills are now using an alternative daily cover to conserve landfill air space; the 1,500 pounds per cubic yard is similar conservative, since Bayview Landfill operators routinely achieve approximately 1,600 pounds per cubic yard; and the 22 year service life of cells 2 & 3 is likely 25 percent low.

Long-term landfill tonnage is difficult to estimate. The current economic downturn has caused a decrease of 15 to 40 percent in solid wastes received at landfills throughout the United States. Most of this decrease is attributable to less construction and demolition (C&D) waste generated and disposed of in landfills. Locally, the Bayview Landfill is currently receiving approximately 20 percent less MSW than it did immediately before the economic downturn. On the other hand, recycling has increased significantly in the past 20 years (or less), which also affects the volume of MSW arriving at a landfill. In the 20 (almost 21) years since Bayview opened for business, South Utah Valley Solid Waste District has gone from less than 1 or 2 percent recycling to approximately 20 percent recycling. Population projections fail

to consider the changes in solid waste management which have occurred and which will continue to occur. At some point in the future, population growth and recycling growth (or other management changes) may cancel each other.

In any case, it is beyond the scope of this study to project solid waste growth in a quantitative manner. Currently, the Bayview Landfill is receiving approximately 115,000 tons of MSW per year. For purposes of this study, I increased this tonnage by 75 percent (to approximately 200,000 tons per year) and applied this tonnage to the remaining life of the Bayview Landfill. This number will be high in early years and may be low in later years, but it was an expedient way to estimate site life.

The 2009 calculations by HDR show a probable life time of the Bayview Landfill of 22 years for Cells 2 & 3. These 22 years plus 74 years for Cells 4 through 7 gives us 96 years of life using conservative estimates for

SUVSWD-controlled MSW. I believe that this estimate could be 20 to 30 percent low; multiplying 74 years by 125 percent gives us 92 years of life cells 4 through 7 or 114 years for the combination of cells 2 through 7.

Based on these estimates, I believe that the Bayview offers more than 100 years of capacity for its member cities.

Summary

,

.

This letter report has provided the South Utah Valley Solid Waste District Board of Directors with estimates of the capacity of the Bayview Landfill for disposal of District-controlled MSW. I estimated that the Bayview Landfill will provide District citizens with reliable MSW disposal for more than 100 years.

I appreciate the opportunity to continue to serve the District, and truly appreciate the teamwork that Mr. Perry and I were able to achieve.

Sincerely,

Richard T. Sprague Principal R.T. Sprague Consulting

Attachments

AutoCAD Earthwork Volume Report "Back of the Envelope" Calculation Sheet

Earthwork Report

.

From: Sent: Subject:	Saved by Windows Internet Explorer 8 Wednesday, November 30, 2011 12:10 PM Earthwork Report					
Project Info	prmation	Coordinate Sy	stem			
Name:	C \Documents and Settings\dperry\My Documents\Business Center - HCE\Trimble Business Center\future cell south side cap.vcc	Name Datum: Zone	SCS900 Localizations Datum from Data Collector SCS900 Record			
Size.	232 KB	Gcoud:				
Modified. Time zonc	11/30/2011 10 16.42 AM (UTC - 7) Mountain Standard Time	Vertical datum				
Reference number Description						

Earthwork Volume Report

Unclassified surface compared to Work-in-progress surface

Surfaces	
Future Cell South Side	Classification: Unclassified
cap on future cell	Classification Work-m-progress
Bank Volumes Based on Surface Geometry Alone	
Cut material:	0.0 yd ³
Fill material:	24,640,678.3 yd ^a
Deficit:	24,640,678.3 yd ³

Note: 'Cut Material' is defined as material where [cap on future cell] is lower than [Future Cell South Side]. 'Fill Material' is defined as the volume of material where [cap on future cell] is higher than [Future Cell South Side].

Note. The above volumes are calculated solely from the geometries of the selected surfaces. No material properties are applied to the above numbers.

Date. 11/30/2011 12:08:54 PM	Project. C:\Documents and Settings\dperry\My Documents\Business Center - HCE\Trumble Business Center\future cell south side cap.vce	Business Center - HCE
------------------------------	---	-----------------------

1 of 1

12/8/2011 7:56 PM

.

CALCULATIONS

Client: South Utah Valley Solid Waste District Purpose: Calculate Volumetric Life of Cells 4 - 7 Project: Bayview Landfill Site Life

7 Date: December 9, 2011

Assumptions:

.

- 1. Create an area fill from four cells shown on the current master plan; use the 1989 outer perimeter*
- 2. 4:1 internal landfill slopes*
- 3. 4:1 external landfill slopes
- 4. 1,500 pounds per cubic yard density of in-place MSW*
- 5. 20% soil-to-MSW ratio (no ADC)*
- 6. 2.5% slope for landfill bottom and closure cap
- 7. 110 feet of elevation difference including liner and cap (100 feet of MSW) *
 - * Approximately 10% conservative

Volume Calculation:

- Area = 2,100 ft X 4,000 ft = 8,400,000 sq ft/43,560 sq ft/ac = 192 acres Say 190 acres
- Assume that excavation depth and final elevation above ground level are equal over the site. Therefore, 4:1 slopes interior/exterior each average 50 vertical feet. Slope = 50 ft X 4 = 200 ft. This affects both opposing slopes, so two times 200 feet. (3,780 ft - (400 ft)) X (2,085 ft - 400 ft) = 5,695,000 sq ft/43,560 sq ft/ac = 130.7 acres; say 130 acres
- 3. (5,695,000 sq ft X 100 ft)/27 cu ft/cu yd = 21,090,000 cu yd = 15,800,000 tons @ 1,500 lb/cu yd. This is volume calculated for vertical landfill walls, without inclusion of interior/exterior slopes.
- 4. If slopes are (on average) 200 ft in length, and depth is 100 ft, the horizontal extension of the 200 ft slope is the square root of 200 squared plus 50 squared (half the depth) = 206 ft, and the area of the slope is 200 ft X 100 ft/2 = 10,000 sq ft. 10,000 sq ft X 1ft/1/ft = 10,000 cu ft/ft of perimeter = 370 cu yd/ft of perimeter. If perimeter is 10,000 ft, 10,000 ft X 370 cu yd/ft = 3,700,000 cu yd = 2,775,000 tons. Say 2,700,000 tons.
- 5. Capacity is 15,800,000 tons + 2,700,000 tons = 18,500,000 tons. At 20% soil (daily and intermediate cover) = 14,800,000 tons.
- 6. Long-term landfill tonnage is difficult to estimate: current tonnage at landfills nationwide is down 15% to 40%, with an average around 20% (primarily due to a plunge in construction and demolition debris (C&D)), so current tonnage is a poor indicator; Utah County has a strong growth potential especially in the southern part of the County, so tonnage should increase; at the same time, diversion (both in Utah County and nationally) is increasing dramatically. At some point, build growth and recycling growth are likely to equal each other.

Therefore, assume a build-out tonnage of approximately 75% increase from today's amount (approximately 115,000 tons per year in 2011 vs. approximately 200,000 tons per year at build-out).

14,800,000 tons / 200,000 tons per year = 74 years. Since this value is conservative by 20% to 40% (say 25%), the range of years-to-capacity of the southern cell is 88 to 104 years for disposal of SUVSWD-controlled waste.

- 7. In 2009, HDR's Landfill Master Plan revision stated that the capacity of Cells 2 & 3 combined will reach capacity in 2033. Since that time, SUVSWD has received approval from the State to increase the height of this combined cell. Also since 2009, landfill tonnage has decreased approximately 20%. Both of these facts make 2033 a very conservative estimate.
- 8. Adding these cell lives gives an overall site capacity of 110 to 126 years for the disposal of SUVSWD waste.
- 9. Moving forward, SUVSWD could reasonably assume that the currently leased Bayview Landfill site has a capacity sufficient to provide more than 100 years of SUVSWD-controlled waste disposal.

Division of Solid and Hazardous Waste

FEB 2 7 2013 2013-002106

October 29, 2012

Scott Aitken South Utah Valley Solid Waste District P.O. Box 507 Springville, UT 84663

Re: April 2012 Groundwater Monitoring Statistical Results for Bayview Landfill

Dear Mr. Aitken:

HDR Engineering, Inc. (HDR) has prepared this letter report regarding the groundwater monitoring program at the Bayview Landfill. This report summarizes the statistical analyses performed for results from the groundwater sampling conducted in **April 2012**. Attachment 1 contains the control charts and prediction limit graphs used in the statistical analyses. Attachment 2 contains the results of the latest laboratory analyses and the results of the field-measured parameters, including a recording of the static water level found in each well.

Statistical Methods

The initial inter-well analysis of the groundwater chemistry indicated enough variability between wells to justify using an intra-well analysis approach. The results of the inter-well analysis were presented in a report submitted to the Division of Solid and Hazardous Waste on October 8, 1998. A software package called SANITAS, developed by NIC Environmental (formerly Intelligent Decision Technologies of Longmont, Colorado), was used to perform the statistical analysis of the groundwater data.

The statistical analysis approach uses intra-well methods consisting of control charts and prediction limits. The purpose of this analysis is to determine if there are any statistically significant changes in the compliance data relative to background concentrations. These methods establish limit values based on the background water quality data collected for each well.

In the case of control charts, a statistically significant change is based on the standard deviation established by the background data. When using the control charts method, the constituents will have the following characteristics:

• The data will be tested for normality using the Shipiro-Wilk normality test (for <50 samples) or the Shipiro-Francia test (for >50 samples) included in the SANITAS statistical analysis package. The Shapiro-Wilk normality test is the preferred method based on EPA guidance.¹ When data are considered normal, the values are consistent and follow a normal, bell-shaped curve (Gaussian curve). The majority of the values (95%) are within two standard deviations from the mean of the concentration values.

¹ EPA, June 1992. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance. EPA 530SW89026.

April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 2 of 7

- The percentage of non-detects will be less than 50%.
- The data will have no statistical trends as shown by the trend analysis plots.
- This method assumes that the landfill has not previously affected the groundwater.

The SANITAS program will not execute a control chart if the data set is transformed normal using Cohen's adjustment. In general, Cohen's adjustment accounts for data that are below the set detection limit or practical quantitation limit (PQL) for the method established by the laboratory. The Cohen adjustment is executed when the data set includes at least 15% non-detects.

The constituents that do not meet all the criteria above are analyzed using a prediction limit (PL). Typically, for inorganic constituents, the preferred method is to use a parametric intra-well analysis approach. Under this approach, the false positive rate or alpha is 0.01 or 1%. The assumption under the parametric approach is that the background data are normal or transformed normal. The PL for a particular constituent is calculated from the mean value (X) of the entire background data set, excluding the most recent data point, using the following equation:

PL = Mean (X) + (T-value × Standard Deviation) Note T-value from standard statistical tables

Not all constituents in this data set allow the use of a parametric approach. A non-parametric approach will be used in lieu of a parametric approach if the data set fails the normality test using the Shipiro-Wilk normality test, cannot be transformed normal, and has between 50% and 90% non-detects. When the data set has greater than 90% non-detects, an intra-well Poisson PL is executed, and the non-detect values are substituted with one-half the detection limit. Data that fall under the Poisson criteria have a low probability of detection but stay constant from sampling period to sampling period.² When a non-parametric approach is applied, the highest background concentration from the data set is used for the PL.

Summary of Statistical Analysis

The statistical analysis is for data collected from wells DMW-3, DMW-6, DMW-7, DMW-8, and DMW-9 during the period from March 1991 through April 2012. The background sampling was performed from March 1991 to June 1992. Well DMW-7 is located upgradient from landfill Cell #1. Wells DMW-3 and DMW-8 serve as downgradient compliance wells for landfill Cell #1. Monitoring well DMW-6 is east of the leachate pond. Monitoring well DMW-9 serves as a downgradient well for the initial phases of Cell #2. Background samples from DMW-9 were collected between December 2004 and October 2007.

The laboratory analytical results were reviewed to determine whether a statistical analysis was needed. If the laboratory results reported a non-detect for a particular constituent from a particular monitoring well, no statistical analysis was conducted for that constituent. However, the information was placed in the groundwater quality database to maintain a complete record.

No volatile organic constituents (VOCs) were detected in any well. Therefore, no statistical analysis was conducted for VOCs.

² EPA, June 1992. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance. EPA 530SW89026.

April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 3 of 7

Statistically Significant Changes

The data were analyzed using control charts (titled Combined Shewhart-Cusum Charts) and PL graphs to determine if there were any statistically significant changes from background levels. Only statistically significant changes in the reported values from the latest sampling event are reported here.

Upgradient Monitoring Well

<u>DMW-7</u>

No statistically significant changes detected in data

Compliance Monitoring Wells

<u>DMW-3</u>

The laboratory reported pH (7.5) was determined by Sanitas to be a statistically significant change. The reported pH concentration is within the control limits; however, a statistically significant change is reported because the low-CUSUM line on the control chart shows a trend that is below the lower control. Compared to background concentrations in DMW-7, the reported pH concentration in DMW-3 appears to be within the natural variability of pH concentrations in groundwater at the site. In addition, the reported concentration is within the Utah Ground Water Quality Standards, which ranges from 6.5 to 8.5.³

<u>DMW-8</u>

No statistically significant changes detected in data

<u>DMW-9</u>

The statistical analysis conducted on the concentrations of sulfate in this compliance monitoring well show a statistically significant change compared to background concentrations in groundwater from this well. The reported concentration of sulfate (65.2 mg/L) from the latest sampling event is within control limits. However, the CUSUM line, which represents a long-term trend, exceeded the limit. This trend is caused by one sample, from May 2010 (159 mg/L), being elevated. When the EPA 1989 statistical outliers test is applied to the entire DMW-9 sulfate data set, the May 2010 concentration is determined to be an outlier. The April 2012 result is the forth consecutive sulfate concentration reported by the laboratory that falls within the control limit (see the control charts and EPA outliers test results provided in Attachment 1). The reported concentration of iron (0.092 mg/L) is a statistically significant increase compared to background concentrations in this compliance well. The distribution of the background data was determined to be non-normal, and a non-parametric statistical approach was used. The data are nonnormal because the background concentrations were mostly non-detects. As mentioned above, when a non-parametric approach is applied, the highest background concentration from the data set is used for the PL. The PL for the data set was set at the laboratory detection limit 0.05 mg/L, which is 0.042 mg/L lower than the reported concentration (0.092 mg/L) from the April 2012 sampling. Background sampling at the landfill reported iron concentrations as high as 1 mg/L to 2 mg/L in background sample data from compliance well DMW 6 and as high as 3 to 4 mg/L in upgradient wells DMW-1 and DMW-4. This

³ Utah Administrative Code Rule 317-6

April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 4 of 7

indicates that iron might be naturally occurring at concentrations similar to the concentration reported in the April 2012 groundwater sample from compliance DMW 9.

The statistical analysis conducted for the latest sampling event for sodium indicated a statistically significant change. The reported concentration of sodium (96.5 mg/L) is within control limits. However, the CUSUM trend line exceeded the limit. All sodium concentrations in the data set for DMW-9 have remained below the control limit. While there is a general upward trend in sodium concentrations in DMW-9, the concentrations (ranging from about 90 to 100 mg/L) are all close to the concentration in background samples collected from other upgradient wells. For example, the reported concentrations of sodium in both upgradient and down gradient wells collected during background sampling events average from about 100 to 130 mg/L with background concentrations as high as 150 to 160 mg/L in DMW-3.

This indicates the April 2012 concentration in DMW-9 remains near natural occurring sodium levels.

No other statistically significant changes were detected in the laboratory data for this well.

Leachate Pond Monitoring Well

<u>DMW-6</u>

The laboratory reported a chloride concentration of 96.8 mg/L in this compliance monitoring well. The statistical analysis conducted for this sampling event noted a statistically significant change from background sampling concentrations. The laboratory determined that the concentration is below the background control limits (109.1 mg/L); however a statistical significant change is reported because the CUSUM trend line for chloride remains above the control limits. The cause of the trend line exceeding the limits was due to a reported chloride concentration of 129 mg/L from the April 2011 sampling event. When the EPA 1989 statistical outliers test is applied to the entire DMW-6 chloride data set, the April 2011 concentration is determined to be an outlier (see EPA outliers test results provided in Attachment 1). Laboratory results from the last two sampling events report chloride concentrations below the control limit. As detection monitoring continues, and concentrations remain below background control limits, the CUSUM trend line will continue to fall back below the established limits.

The laboratory reported pH (7.9) was noted as a statistically significant change. The reported pH concentration is within the control limits; however, a statistically significant change is reported because the low-CUSUM line on the control chart shows a trend that is below the lower control. Compared to background concentrations in upgradient well DMW-7, the reported pH concentration in DMW-6 appears to be within the natural variability of pH concentrations in groundwater at the site. In addition, the reported concentration is within the Utah Ground Water Quality Standards, which ranges from 6.5 to 8.5.⁴

The laboratory reported a nitrate concentration (1.07 mg/L) in this compliance monitoring well. The statistical analysis noted a statistically significant change from background sampling concentrations. The reported concentration is below the background control limits (1.66 mg/L); however the reported statistically significant change was due to the CUSUM trend line for chloride remaining above the control limits. When compared to the mean nitrate concentration in DMW-7 (5.06 mg/l), which serves as an up

⁴ Utah Administrative Code Rule 317-6

April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 5 of 7

gradient compliance well, the data indicates that the concentration detected in the April 2012 sampling event is well within naturally occurring nitrate concentrations in the area. The State of Utah does not have groundwater standards for nitrate.

No other statistically significant changes in the data were noted.

Conclusions

<u>'</u> :

Statistical analysis conducted for the April 2012 groundwater sampling event indicate statistically significant changes in chemical concentrations from compliance monitoring wells DMW-3, DMW-6 and DMW-9. However, none of the statistically significant changes were a result of the chemical concentrations from the latest sampling event. Considering the background concentrations in these compliance wells and the concentrations in upgradient wells, the reported chemical concentrations from the April 2012 sampling event appear to be near naturally occurring levels.

If you have any questions regarding this letter or the results of the analysis, please contact me at (801) 743-7812.

Sincerely,

Trykhme

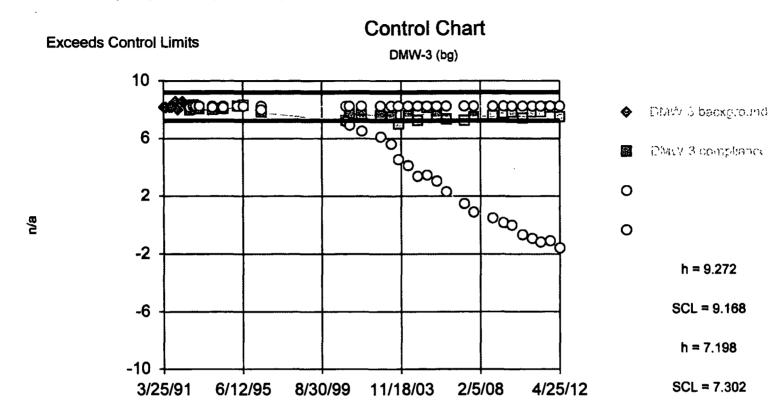
Terry Warner, PE HDR Engineering, Inc.

Attachment 1: Control charts and prediction limit graphs Attachment 2: Results of laboratory analysis, field-measured parameters, and chain of custody form April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 6 of 7

. .

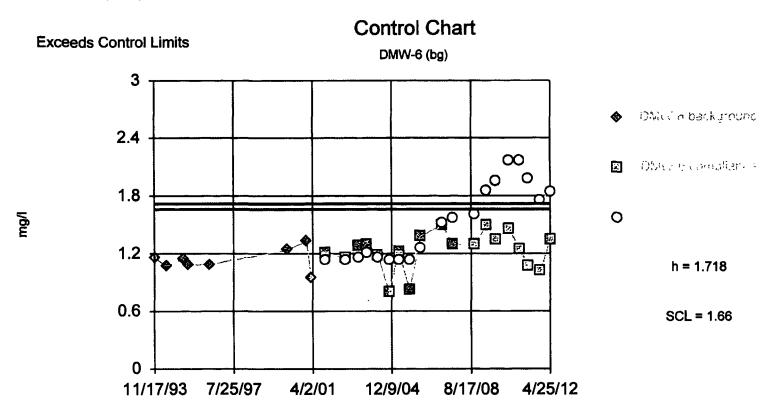
ł

.

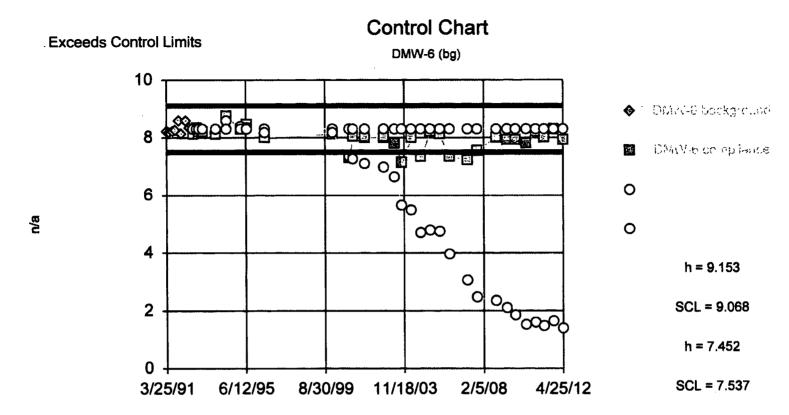

C,

Attachment 1

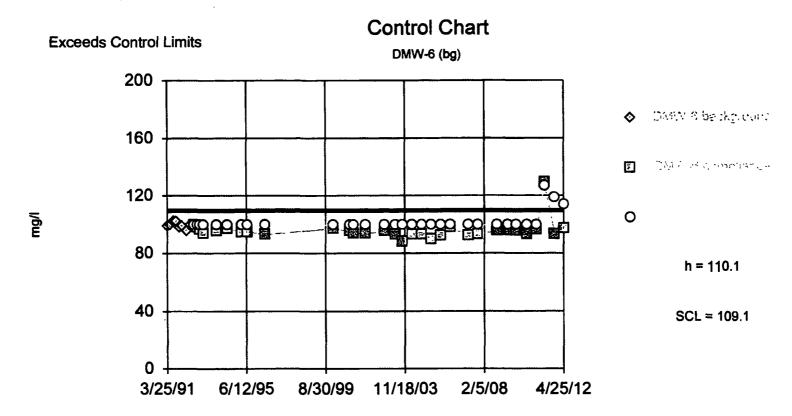
.


Statistical Analysis Results

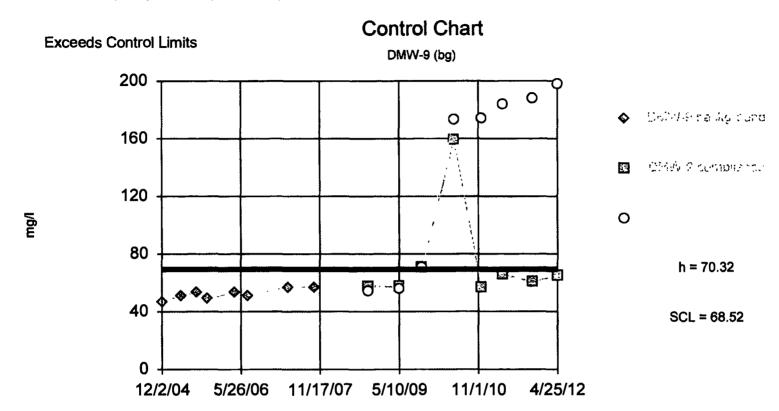
2


Background Data Summary: Mean=8.235, Std. Dev.=0.2074, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8781, critical = 0.818. Dates ending 6/24/1992 used for control stats.

Constituent: pH Analysis Run 8/1/2012 11:33 AM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D


Background Data Summary: Mean=1.133, Std. Dev.=0.1171, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.971, critical = 0.818. Dates ending 3/7/2001 used for control stats.

Constituent: Nitrate Analysis Run 8/1/2012 12:02 PM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D

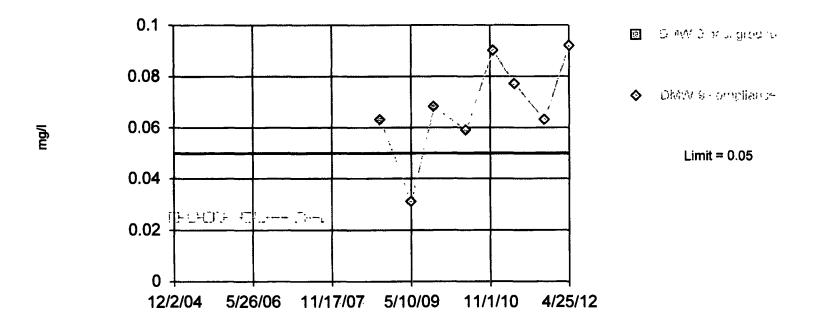

Background Data Summary: Mean=8.303, Std. Dev.=0.1701, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8265, critical = 0.818. Dates ending 6/24/1992 used for control stats.

Constituent: pH Analysis Run 8/1/2012 12:04 PM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D

Background Data Summary: Mean=99.3, Std. Dev.=2.17, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9226, critical = 0.818. Dates ending 6/24/1992 used for control stats.

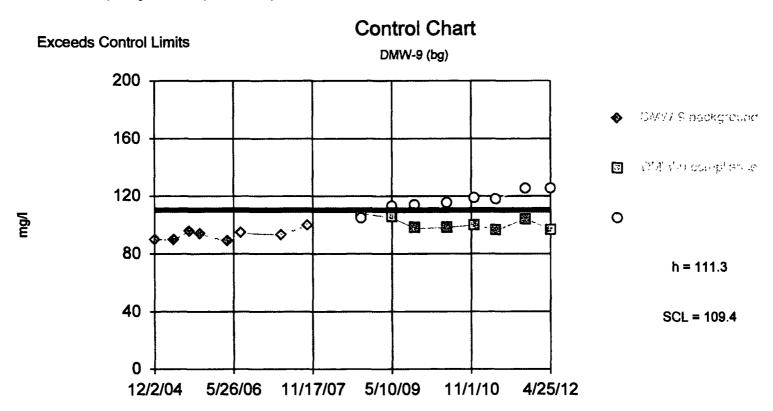
Constituent: Chloride Analysis Run 8/1/2012 11:53 AM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D

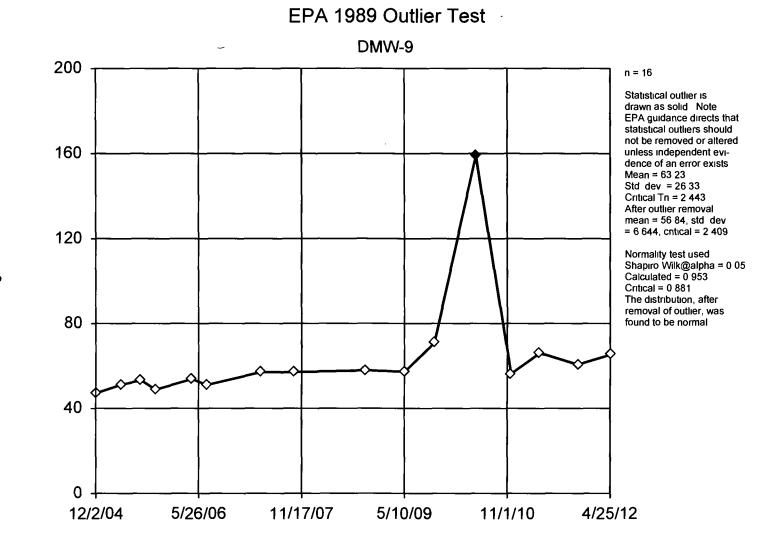
Background Data Summary: Mean=52.35, Std. Dev.=3.594, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9434, critical = 0.818. Dates ending 10/10/2007 used for control stats.

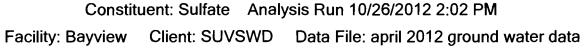

Constituent: Sulfate Analysis Run 8/1/2012 2:10 PM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D

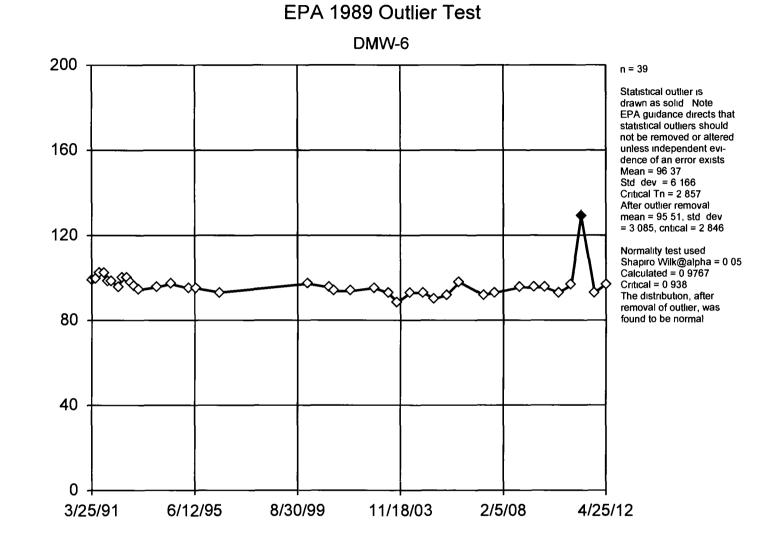
v.9.0.28 For the statistical analysis of ground water by SUVSWD only. EPA Hollow symbols indicate censored values.

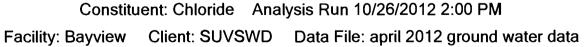
Exceeds Limit


Prediction Limit


Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 50%. All background values were censored; limit is most recent reporting limit Report alpha = 0.1111. Most recent point compared to limit.


Constituent: Iron Analysis Run 8/1/2012 1:30 PM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D


Background Data Summary: Mean=93.03, Std. Dev.=3.645, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9447, critical = 0.818. Dates ending 10/10/2007 used for control stats.


Constituent: Na Analysis Run 8/1/2012 2:05 PM Facility: Bayview Landfill Client: SUVSWD Data File: 501B656D .

mg/l

·

l/gm

April 2012 Groundwater Monitoring Statistical Results October 29, 2012 Page 7 of 7

. . . `•

Attachment 2

Field Monitored Data

Laboratory Results

Chain of Custody

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs com

Analytical Test Results

South Utah Valley Solid Waste Scott Aitken P.O. Box 507 Springville, UT 84663-0507 Date Reported: 5/11/2011

Work Order #: 4879 PO# / Project Name: Bayview Landfill Date / Time Received: 4/21/2011 12.52

Lab ID #:

111075

Sample Name: DMW7	
-------------------	--

Collected: 4/21/2011 10:5	9 Matrix: W	ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	Flags
Antimony	3113 B-99	5/9/2011	0.005	mg/L	< 0.005	
Arsenic	200.7	4/27/2011	0.01	mg/L	0.032	
Barium	200.7	4/27/2011	0.005	mg/L	0.021	
Beryllium	200.7	4/27/2011	0.004	mg/L	< 0.004	
Cadmium	200.7	4/27/2011	0.005	mg/L	< 0.005	
Calcium	200.7	4/28/2011	0.05	mg/L	29.5	
Chromium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Cobalt	200.7	4/27/2011	0.05	mg/L	< 0.05	
Copper	200.7	4/27/2011	0.05	mg/L	< 0.05	
Iron	200.7	4/27/2011	0.02	mg/L	0.22	
Lead	200.7	4/27/2011	0.01	mg/L	< 0.01	
Magnesium	200.7	4/28/2011	0.05	mg/L	10.5	
Manganese	200.7	4/27/2011	0.01	mg/L	< 0.01	
Mercury	245.1	5/9/2011	0.0002	mg/L	< 0.0002	
Nickel	200.7	4/27/2011	0.05	mg/L	< 0.05	
Potassium	200.7	4/28/2011	0.2	mg/L	6.86	Jlo
Selenium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Silver	200.7	4/27/2011	0.01	mg/L	< 0.01	
Sodium	200.7	4/28/2011	1	mg/L	127	
Thallium	3113 B-99	5/9/2011	0.002	mg/L	< 0.002	
Vanadium	200.7	4/27/2011	0.05	mg/L	< 0.05	
Zinc	200.7	4/27/2011	0.05	mg/L	< 0.05	
Parameter	<u>Method</u>	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Total Organic Carbon (TOC)	SM5310B	4/22/2011	1	ppm	2.88	S 2

Sample Name: DMW7				Lab ID #:	111075	
Collected: 4/21/2011 10:59	Matrix: W	ater				
Parameter	<u>Method</u>	<u>Analysis Date</u>	<u>MRL</u>	<u>Units</u>	<u>Results</u>	<u>Flags</u>
1,2-Dibromo-3-Chloropropane	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Ethylene Dibromide	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Volatiles Prep	5030A	5/4/2011			•	
1,1,1,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,1-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichlorotrifluoroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,1-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloropropene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dibromo-3-chloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,2-Dibromoethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	5/4/2011	0.01	mg/L	< 0.01	
2-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Methyl 2-pentanone (MIBK)	8260B	5/4/2011	0.02	mg/L	< 0.02	
Acetone	8260B	5/4/2011	0.02	mg/L	< 0.02	
Benzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromoform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Carbon Tetrachloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	5/4/2011	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dibromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	5/4/2011	0.02	mg/L	< 0.02	UJ

• ••

· ·

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Order 4879

Page 2 of 15

Sample Name: DMW7				Lab ID #: 111	075	
Collected: 4/21/2011 10:59	Matrix: Water	r				
Ethyl Ether	8260B	5/4/2011	0.01	mg/L	< 0.01	UJ
Ethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Hexachlorobutadiene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Isopropylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
m,p-Xylenes	8260B	5/4/2011	0.005	mg/L	< 0.005	
Methylene Chloride	8260B	5/4/2011	0.01	mg/L	< 0.01	
MTBE	8260B	5/4/2011	0.005	mg/L	< 0.005	
Naphthalene	8260B	5/4/2011	0.01	mg/L	< 0.01	
n-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
n-Propylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
o-Xylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
p-lsopropyltoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
sec-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Styrene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tert-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tetrachloroethylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Toluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
trans-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichlorofluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Vinyl Chloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
<u>Parameter</u>	Method	<u>Analysis Date</u>	<u>MRL</u>	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Ammonia (NH3-N), Direct ISE	4500(NH3)E	4/25/2011	0.2	mg/L	0.327	S 1
Chemical Oxygen Demand	8000	4/22/2011	10	mg/L	< 10	S 1
Nitrate (NO3-N)	352.1	4/22/2011	0.2	mg/L	4.94	S 1
Total Dissolved Solids (TDS)	2540C	4/22/2011	20	mg/L	370	S 1
Bicarbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	150	
Carbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	< 1	
Chloride	4500 (Cl-)	5/10/2011	10	mg/L	18.1	
pH Units	4500(H+)B	4/21/2011		рН	8.0 at 22°C	
Sulfate	D-516 (02)	5/6/2011	50	mg/L	208	

· · · ·

Sample Name: DMW8				Lab ID #:	111082	
Collected: 4/21/2011 10:11	Matrix: W	/ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Antimony	3113 B-99	5/9/2011	0.005	mg/L	< 0.005	
Arsenic	200.7	4/27/2011	0.01	mg/L	0.018	
Barium	200.7	4/27/2011	0.005	mg/L	0.020	
Beryllium	200.7	4/27/2011	0.004	mg/L	< 0.004	
Cadmium	200.7	4/27/2011	0.005	mg/L	< 0.005	
Calcium	200.7	4/28/2011	0.05	mg/L	51.3	
Chromium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Cobalt	200.7	4/27/2011	0.05	mg/L	< 0.05	
Copper	200.7	4/27/2011	0.05	mg/L	< 0.05	
ron	200.7	4/27/2011	0.02	mg/L	0.030	
ead	200.7	4/27/2011	0.01	mg/L	< 0.01.	
1agnesium	200.7	4/28/2011	0.05	mg/L	19.7	
langanese	200.7	4/27/2011	0.01	mg/L	< 0.01	
1ercury	245.1	5/9/2011	0.0002	mg/L	< 0.0002	
lickel	200.7	4/27/2011	0.05	mg/L	< 0.05	
otassium	200.7	4/28/2011	0.2	mg/L	9.41	Jlo
elenium	200.7	4/27/2011	0.01	mg/L	< 0.01	
ilver	200.7	4/27/2011	0.01	mg/L	< 0.01	
odium 、	200.7	4/28/2011	1	mg/L	169	
`hallium	3113 B-99	5/9/2011	0.002	mg/L	< 0.002	
/anadium	200.7	4/27/2011	0.05	mg/L	< 0.05	
Linc	200.7	4/27/2011	0.05	mg/L	< 0.05	
Parameter	<u>Method</u>	<u>Analysis Date</u>	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Total Organic Carbon (TOC)	SM5310B	4/22/2011	1	ppm	1.85	S 2

•

.

.

Sample Name: DMW8			La	ab ID #: 11	1082	
Collected: 4/21/2011 10:11	Matrix: W	ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	Results	Flags
1,2-Dibromo-3-Chloropropane	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Ethylene Dibromide	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Volatiles Prep	5030A	5/4/2011		-		
1,1,1,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,1-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichlorotrifluoroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,1-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloropropene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dibromo-3-chloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,2-Dibromoethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	5/4/2011	0.01	mg/L	< 0.01	
2-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Methyl 2-pentanone (MIBK)	8260B	5/4/2011	0.02	mg/L	< 0.02	
Acetone	8260B	5/4/2011	0.02	mg/L	< 0.02	
Benzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromoform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Carbon Tetrachloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	5/4/2011	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dibromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	5/4/2011	0.02	mg/L	< 0.02	UJ

.

.

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

.

ample Name: DMW8			La	ab ID #: 11	1082		
collected: 4/21/2011 10:11	Matrix: Wa	ater					
thyl Ether	8260B	5/4/2011	0.01	mg/L	< 0.01	UJ	
thylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
lexachlorobutadiene	8260B	5/4/2011	0.005	mg/L	< 0.005		
sopropylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
n,p-Xylenes	8260B	5/4/2011	0.005	mg/L	< 0.005		
1ethylene Chloride	8260B	5/4/2011	0.01	mg/L	< 0.01		
1TBE	8260B	5/4/2011	0.005	mg/L	< 0.005		
laphthalene	8260B	5/4/2011	0.01	mg/L	< 0.01		
-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
-Propylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
-Xylene	8260B	5/4/2011	0.005	mg/L	< 0.005		
-Isopropyltoluene	8260B	5/4/2011	0.005	mg/L	< 0.005		
ec-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
tyrene	8260B	5/4/2011	0.005	mg/L	< 0.005		
ert-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
etrachloroethylene	8260B	5/4/2011	0.005	mg/L	< 0.005		
oluene	8260B	5/4/2011	0.005	mg/L	< 0.005		
ans-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005		
richloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005		
richlorofluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005		
inyl Chloride	8260B	5/4/2011	0.005	mg/L	< 0.005		
arameter	Method	<u>Analysis Date</u>	<u>MRL</u>	<u>Units</u>	<u>Results</u>		<u>igs</u>
mmonia (NH3-N), Direct ISE	4500(NH3)E	4/25/2011	0.2	mg/L	< 0.2	s	1
Chemical Oxygen Demand	8000	4/22/2011	10	mg/L	< 10	S	1
litrate (NO3-N)	352.1	4/22/2011	0.2	mg/L	3.60	S	1
otal Dissolved Solids (TDS)	2540C	4/22/2011	20	mg/L	520	S	1
icarbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	151		
arbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	< 1		
hloride	4500 (Cl-)	5/10/2011	10	mg/L	182		
H Units	4500(H+)B	4/21/2011		pН	7.8 at 22°C		
ulfate	D-516 (02)	5/6/2011	50	mg/L	162		

. • . •

Sample Name: DMW3			L	ab ID #: 11 [.]	1089	
Collected: 4/21/2011 9:45	Matrix: W	ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	Results	<u>Flags</u>
Antimony	3113 B-99	5/9/2011	0.005	mg/L	< 0.005	
Arsenic	200.7	4/27/2011	0.01	mg/L	0.018	
Barium	200.7	4/27/2011	0.005	mg/L	0.024	
Beryllium	200.7	4/27/2011	0.004	mg/L	< 0.004	
Cadmium	200.7	4/27/2011	0.005	mg/L	< 0.005	
Calcium	200.7	4/28/2011	0.05	mg/L	47.7	
Chromium	200.7	4/27/2011	0.01	mg/L	0.022	
Cobalt	200.7	4/27/2011	0.05	mg/L	< 0.05	
Copper	200.7	4/27/2011	0.05	mg/L	< 0.05	
ron	200.7	4/27/2011	0.02	mg/L	0.20	
Lead	200.7	4/27/2011	0.01	mg/L	< 0.01	
Aagnesium	200.7	4/28/2011	0.05	mg/L	20.8	
Aanganese	200.7	4/27/2011	0.01	mg/L	0.015	•
Mercury	245.1	5/9/2011	0.0002	mg/L	< 0.0002	
Nickel	200.7	4/27/2011	0.05	mg/L	< 0.05	
Potassium	200.7	4/28/2011	0.2	mg/L	10.3	Jlo
Selenium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Silver	200.7	4/27/2011	0.01	mg/L	< 0.01	
Sodium	200.7	4/28/2011	1	mg/L	158	
Thallium	3113 B-99	5/9/2011	0.002	mg/L	< 0.002	
√anadium	200.7	4/27/2011	0.05	mg/L	< 0.05	
Zinc	200.7	4/27/2011	0.05	mg/L	< 0.05	
Parameter .	Method	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Total Organic Carbon (TOC)	SM5310B	4/22/2011	1	ppm	2.04	S 2

ê ¹ - 1

.

•

Sample Name: DMW3			Li	ab ID #: 11	1089	
Collected: 4/21/2011 9:45	Matrix: W	ater				
Parameter	<u>Method</u>	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	Flags
1,2-Dibromo-3-Chloropropane	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Ethylene Dibromide	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Volatiles Prep	5030A	5/4/2011		10		
1,1,1,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,1-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichlorotrifluoroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,1-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloropropene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	5/4/2011	.0.005	mg/L	< 0.005	
1,2,3-Trichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dibromo-3-chloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,2-Dibromoethane	8260B	5/4/2011	0.005	mg/L	< 0:005	
1,2-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	5/4/2011	0.01	mg/L	< 0.01	
2-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Methyl 2-pentanone (MIBK)	8260B	5/4/2011	0.02	mg/L	< 0.02	
Acetone	8260B	5/4/2011	0.02	mg/L	< 0.02	
Benzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromoform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Carbon Tetrachloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	5/4/2011	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dibromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	5/4/2011	0.02	mg/L	< 0.02	UJ

• • • •

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Sample Name: DMW3			L	.ab ID #:	111089	
Collected: 4/21/2011 9:45	Matrix: Wa	ater				
Ethyl Ether	8260B	5/4/2011	0.01	mg/L	< 0.01	UJ
Ethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Hexachlorobutadiene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Isopropylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
m,p-Xylenes	8260B	5/4/2011	0.005	mg/L	< 0.005	
Methylene Chloride	8260B	5/4/2011	0.01	mg/L	< 0.01	
MTBE	8260B	5/4/2011	0.005	mg/L	< 0.005	
Naphthalene	8260B	5/4/2011	0.01	mg/L	< 0.01	
n-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
n-Propylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
o-Xylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
p-lsopropyltoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
sec-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Styrene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tert-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tetrachloroethylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Toluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
trans-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichlorofluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Vinyl Chloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
<u>Parameter</u>	<u>Method</u>	<u>Analysis Date</u>	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Ammonia (NH3-N), Direct ISE	4500(NH3)E	4/25/2011	0.2	mg/L	< 0.2	S 1
Chemical Oxygen Demand	8000	4/22/2011	10	mg/L	< 10	S 1
Nitrate (NO3-N)	352.1	4/22/2011	0.2	mg/L	1.36	S 1
Total Dissolved Solids (TDS)	2540C	4/22/2011	20	mg/L	566	S 1
Bicarbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	149	
Carbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	< 1	
Chloride	4500 (Cl-)	5/10/2011	10	mg/L	186	
pH Units	4500(H+)B	4/21/2011		pН	7.8 at 22°C	
Sulfate	D-516 (02)	5/6/2011	50	mg/L	141	

-

. . . .

.

Sample Name: DMW9			I	Lab ID #: 1	111096	
Collected: 4/21/2011 8:59	Matrix: W	ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	Results	<u>Flags</u>
Antimony	3113 B-99	5/9/2011	0.005	mg/L	< 0.005	
Arsenic	200.7	4/27/2011	0.01	mg/L	< 0.01	
Barium	200.7	4/27/2011	0.005	mg/L	0.054	
Beryllium	200.7	4/27/2011	0.004	mg/L	< 0.004	
Cadmium	200.7	4/27/2011	0.005	mg/L	< 0.005	
Calcium	200.7	4/28/2011	0.05	mg/L	47.7	
Chromium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Cobalt	200.7	4/27/2011	0.05	mg/L	< 0.05	
Copper	200.7	4/27/2011	0.05	mg/L	< 0.05	
ron	200.7	4/27/2011	0.02	mg/L	0.077	
Lead	200.7	4/27/2011	0.01	mg/L	< 0.01	
/lagnesium	200.7	4/28/2011	0.05	mg/L	18.8	
langanese	200.7	4/27/2011	0.01	mg/L	0.017	
Aercury	245.1	5/9/2011	0.0002	mg/L	< 0.0002	
lickel	200.7	4/27/2011	0.05	mg/L	< 0.05	
otassium	200.7	4/28/2011	0.2	mg/L	7.66	Jlo
Selenium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Silver	200.7	4/27/2011	0.01	mg/L	< 0.01	
Sodium	200.7	4/28/2011	0.1	mg/L	96.4	
Thallium	3113 B-99	5/9/2011	0.002	mg/L	< 0.002	
/anadium	200.7	4/27/2011	0.05	mg/L	< 0.05	
Zinc	200.7	4/27/2011	0.05	mg/L	< 0.05	
Parameter	<u>Method</u>	Analysis Date	MRL	Units	<u>Results</u>	<u>Flags</u>
Fotal Organic Carbon (TOC)	SM5310B	4/22/2011	1	ppm	< 1	S 2

. . . .

Sample Name: DMW9			La	ab ID #: 11	1096	
Collected: 4/21/2011 8:59	Matrix: W	ater				
Parameter	Method	Analysis Date	MRL	<u>Units</u>	Results	Flags
1,2-Dibromo-3-Chloropropane	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Ethylene Dibromide	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Volatiles Prep	5030A	5/4/2011				
1,1,1,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,1-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichlorotrifluoroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,1-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloropropene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dibromo-3-chloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,2-Dibromoethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	5/4/2011	0.01	mg/L	< 0.01	
2-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Methyl 2-pentanone (MIBK)	8260B	5/4/2011	0.02	mg/L	< 0.02	
Acetone	8260B	5/4/2011	0.02	mg/L	< 0.02	
Benzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromoform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Carbon Tetrachloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	5/4/2011	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dibromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	5/4/2011	0.02	mg/L	< 0.02	UJ

. '

.

. •

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Sample Name: DMW9				Lab ID #:	111096		
Collected: 4/21/2011 8:59	Matrix: Wate	er					
Ethyl Ether	8260B	5/4/2011	0.01	mg/L	< 0.01	UJ	
Ethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Hexachlorobutadiene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Isopropylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
m,p-Xylenes	8260B	5/4/2011	0.005	mg/L	< 0.005		
Methylene Chloride	8260B	5/4/2011	0.01	mg/L	< 0.01		
MTBE	8260B	5/4/2011	0.005	mg/L	< 0.005		
Naphthalene	8260B	5/4/2011	0.01	mg/L	< 0.01		
n-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
n-Propylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
o-Xylene	8260B	5/4/2011	0.005	mg/L	< 0.005		
p-Isopropyltoluene	8260B	5/4/2011	0.005	mg/L	< 0.005		
sec-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Styrene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Tert-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Fetrachloroethylene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Foluene	8260B	5/4/2011	0.005	mg/L	< 0.005		
rans-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Frichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005		
Frichlorofluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005		
Vinyl Chloride	8260B	5/4/2011	0.005	mg/L	< 0.005		
Parameter	<u>Method</u>	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	<u>Fla</u>	ags
Ammonia (NH3-N), Direct ISE	4500(NH3)E	4/25/2011	0.2	mg/L	< 0.2	s	1
Chemical Oxygen Demand	8000	4/22/2011	10	mg/L	< 10	S	1
Nitrate (NO3-N)	352.1	4/22/2011	0.2	mg/L	4.18	s	1
Fotal Dissolved Solids (TDS)	2540C	4/22/2011	20	mg/L	472	S	1
Bicarbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	121		
Carbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	<		
Chloride	4500 (Cl-)	5/10/2011	10	mg/L	162		
pH Units	4500(H+)B	4/21/2011		pН	8.3 at 22°C		
Sulfate	D-516 (02)	5/6/2011	20	mg/L	66.0		

.

.

. . . .

Sample Name: DMW6			La	b ID #: 11	1103	
Collected: 4/21/2011 8:45	Matrix: W	ater				
Parameter .	Method	Analysis Date	MRL	Units	Results	<u>Flags</u>
Antimony	3113 B-99	5/9/2011	0.005	mg/L	< 0.005	
Arsenic	200.7	4/27/2011	0.01 -	mg/L	0.018	
Barium	200.7	4/27/2011	0.005	mg/L	0.044	
Beryllium	200.7	4/27/2011	0.004	mg/L	< 0.004	
Cadmium	200.7	4/27/2011	0.005	mg/L	< 0.005	
Calcium '	200.7	4/28/2011	0.05	mg/L	20.6	
Chromium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Cobalt	200.7	4/27/2011	0.05	mg/L	< 0.05	
Copper	200.7	4/27/2011	0.05	mg/L	< 0.05	
Iron	200.7	4/27/2011	0.02	mg/L	0.038	
Lead	200.7	4/27/2011	0.01	mg/L	< 0.01	
Magnesium	200.7	4/28/2011	0.05	mg/L	9.03	
Manganese	200.7	4/27/2011	0.01	mg/L	< 0.01	
Mercury	245.1	5/9/2011	0.0002	mg/L	< 0.0002	
Nickel	200.7	4/27/2011	0.05	mg/L	< 0.05	
Potassium	200.7	4/28/2011	0.2	mg/L	5.30	Jlo
Selenium	200.7	4/27/2011	0.01	mg/L	< 0.01	
Silver	200.7	4/27/2011	0.01	mg/L	< 0.01	
Sodium	200.7	4/28/2011	1	mg/L	106	
Thallium	3113 B-99	5/9/2011	0.002	mg/L	< 0.002	
Vanadium	200.7	4/27/2011	0.05	mg/L	< 0.05	
Zinc	200.7	4/27/2011	0.05	mg/L	< 0.05	
<u>Parameter</u>	<u>Method</u>	<u>Analysis Date</u>	<u>MRL</u>	<u>Units</u>	<u>Results</u>	Flags
Total Organic Carbon (TOC)	SM5310B	4/22/2011	1	ppm	< 1	S 2

ъ ^с

• *

Sample Name: DMW6	88 - 4 - 5		La	ab ID #: 11	1103	
Collected: 4/21/2011 8:45	Matrix: W					
Parameter	<u>Method</u>	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	Flags
1,2-Dibromo-3-Chloropropane	504.1	4/25/2011	0.0103	µg/L	< 0.0103	S 2
Ethylene Dibromide	504.1	4/25/2011	0.0103	μg/L	< 0.0103	S 2
Volatiles Prep	5030A	5/4/2011				
1,1,1,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,1-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2,2-Tetrachloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1,2-Trichlorotrifluoroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,1-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,1-Dichloropropene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,3-Trichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2,4-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dibromo-3-chloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
1,2-Dibromoethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	5/4/2011	0.01	mg/L	< 0.01	
2-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
4-Methyl 2-pentanone (MIBK)	8260B	5/4/2011	0.02	mg/L	< 0.02	
Acetone	8260B	5/4/2011	0.02	mg/L	< 0.02	
Benzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromoform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Bromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Carbon Tetrachloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloroethane	8260B	5/4/2011	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	5/4/2011	0.005	mg/L	< 0.005	
Chloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	5/4/2011	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dibromomethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	5/4/2011	0.02	mg/L	< 0.02	UJ

. •

.

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

nelap Page 14 of 15

Sample Name: DMW6			L	ab ID #:	111103	
Collected: 4/21/2011 8:45	Matrix: Wat	er				
Ethyl Ether	8260B	5/4/2011	0.01	mg/L	< 0.01	UJ
Ethylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Hexachlorobutadiene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Isopropylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
m,p-Xylenes	8260B	5/4/2011	0.005	mg/L	< 0.005	
Methylene Chloride	8260B	5/4/2011	0.01	mg/L	< 0.01	
MTBE	8260B	5/4/2011	0.005	mg/L	< 0.005	
Naphthalene	8260B	5/4/2011	0.01	mg/L	< 0.01	
n-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
n-Propylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
o-Xylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
p-lsopropyltoluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
sec-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Styrene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tert-Butylbenzene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Tetrachloroethylene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Toluene	8260B	5/4/2011	0.005	mg/L	< 0.005	
rans-1,2-Dichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichloroethene	8260B	5/4/2011	0.005	mg/L	< 0.005	
Trichlorofluoromethane	8260B	5/4/2011	0.005	mg/L	< 0.005	
Vinyl Chloride	8260B	5/4/2011	0.005	mg/L	< 0.005	
Parameter	Method	Analysis Date	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Ammonia (NH3-N), Direct ISE	4500(NH3)E	4/25/2011	0.2	mg/L	< 0.2	S 1
Chemical Oxygen Demand	8000	4/22/2011	10	mg/L	< 10	S 1
Nitrate (NO3-N)	352.1	4/22/2011	0.2	mg/L	1.07	S 1
Total Dissolved Solids (TDS)	2540C	4/22/2011	20	mg/L	322	S 1
Bicarbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	135	
Carbonate (as CaCO3)	2320B	5/10/2011	1	mg/L	< 1	
Chloride	4500 (Cl-)	5/10/2011	10	mg/L	129	
pH Units	4500(H+)B	4/21/2011		pН	8.0 at 22°C	
Sulfate	D-516 (02)	5/6/2011	50	mg/L	67.1	

Comments:

Flags:

- S1 Subcontracted to Timpview Analytical
- S2 Subcontracted to American West Analytical Laboratories
- Jio Estimated value Result may be biased low Spike or surrogate recovery below QC limits
- UJ Analyte not detected Spike or surrogate recovery below limits

 \Box

Roy Breslawski, Laboratory Manager

www.enviroprolabs.com

Chain of Custody Record

Date: <u>4-21-11</u>

Page: 1 of 5

Scott Aitken											Analys	sis I	Requ	lest	Preser Co	
Contact Name South Utah Valle		one Number e District		Fax Number		G									 	
Company Name 2450 West 400 S		· · · · · · · · · · · · · · · · · · ·			ode	Containers		Ammonia 4500NH3G, COD 8000			Ph 4500(H+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Carbonate/Bicarbonate 2320B		į	Ca, Fe, Mg, Mn, K, Na, Sh, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn 2007 Hg 245 1	1 = 4°0 2 = HN	1O ₃
Street Address					ပိ		e	Ŭ,	100		ide le 23			b, N 245 245	3 = HC	
Springville, UT 8	4663				5	Ŭ	Size	H3C	S 2		hlor), ()	1		K, N lu, P Hg	4 = H ₂	
City, State, Zip	-		Bowien) landE)]	Preservation	Number of	Container	a 4500N	Nitrate 352.1, TDS 2540C		H+)B, C -516 (02 e/Bicarb	EDB/DBCP 504 1	03	fg, Mn, Jr, Co, C 200 7	5 = H ₃ 6 = Na	
Project Name		·····	Site Loc	ation	S.		nta	inot	te 3	415	te D ()	DB	826	, Zn C		
Sample ID	Date Collected	Time	Matrix	Lab ID	Pre	Nu	Co Co	Amn	Nıtra	TOC 415.1	Ph 45 Sulfa Carb	EDB	VOC 8260B	Ca, F Be, C	Comn	nents
DMW7	41-21-11	10:56-10:59	Water	111067	4	1	IL	1								Č.
		11:05 - 11:01	Water	111070	1	1	500		1						•	
		11:14- 11:16	Water	111071	5	3	40			√						·
		10:59 11:05	Water	111072	1	1	IL				\checkmark				 	*
		<u>11:n - wiu</u>	Water	111073	6	3	40			·		1			 	
. <u></u>		ilit it'r	Water	111074	3	2	40						1		 	· · · · · ·
		11107-1110	Water	111075	2	1	500							<u>۲</u>	 	
						<u> </u>									 Şambier	
Special Instruction	is / Comments				(UK		shed By	_			(2) Rel	Inqui	sned t	зу	Sampler	Initials.
					(1) D	ate / Ti	 me		<i>}</i> —		(2) Dat	te / T	me		 Method of 1	Shipment
					<u>પ</u> ેટ		<u> </u>	2:5	57							
						ompan ひ. V	Sin				(2) Cor	mpan	iy		HAND C USPS FEI	
						eceived M	I BY	2.	/		(2) Red	ceive	d By		Co	С
									(2) Date / Time				 Seal In	tact?		
Route Results Through: saitken@suvswd.org						ompan				¥	(2) Cor	npan	iy		Yes	No

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone[.] 801-964-2511 Fax. 801-964-2721

www.enviroprolabs.com

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax: 801-964-2721

Chain of Custody Record

Date: 1-21-11

.

Page: 2 of 5

.

Scott Aitken		489-3027	80	1-491-9367						1	Analys	sis I	Requ	uest		Preserv	
Contact Name South Utah Valle		none Number		Fax Number						<u>-</u>	<u> </u>			···			
Company Name	y Solid Was				ļ	S		8			(-i)			Ag,		1 = 4°C	
2450 West 400 S	South				ې ۲	in i		D 80			500 (0B			, As, Se,		2 = HN	O ₃
Street Address					ŏ.	nta		8	t0C		de 4. : 232			ר Sb אי Sb ל Sb		3 = HC	
Springville, UT 84	4663				Ę	ပိ)iz	13G,	\$ 254), nate			t, Na Jg 2, Pb		4 = H₂S	
City, State, Zip			Boyui	ew land F. 1	Preservation Code	Number of Containers	Container Size	Ammonia 4500NH3G, COD 8000	Nitrate 352 I, TDS 2540C	5 1	Ph 4500(H+)B, Chloride 4500 (Ci-), Sulfate D-516 (02), Carbonate/Bicarbonate 2320B	EDB/DBCP 504.1	60B	Ca, Fe, Mg, Mn, K, Na, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl. V, Zn 2007 Hg 245.1		5 = H ₃ P 6 = Na ₂	
Project Name	Date	1	Site Loc	ation	ese	Į Į	Duti	iuon	ate 3	0.415	SOO(ate [BO'S	VOC 8260B	Fe, N Cd, (V, Zr			
Sample ID	Collected	Time	Matrix	Lab ID	ľå	Ň	ပိ	Am	Nitr	TOC 415 1	Ph 4 Sulf Cart	EDE	Ň V	Ц, Ве,		Comm	ents
DMW 8	4.21-11	10:00-10:03		111076	4	1	1L	V									
	•	10.06 - 10:07	Water	111077	1	1	500		1								
		10:08-10:04		111078	5	3	40			_ \					_	·	
		10:03 -10:06		111079	1	1	1L				V						
·		10:04-10:10		111080	6	3.	40					V					
		10110-10:11	Water	111081	3	2	40										
		0:02-12:08	Water	111082	2	1	500										
			· · · · ·														
Special Instruction	s / Comments	;i	······	· · · · · · · · · · · · · · · · · · ·	$ \Sigma$)~~~	hed By	$\overline{}$	l		(2) Re			Зу		Sempler I	
· · · · · · · · · · · · · · · · · · ·						ate / Tu		2:5	2		(2) Da	te / Ti	ime			beeniod of S	hipment
	_,				(1) C	U.V			<u> </u>		(2) Co	mpan	iy			HAND CA USPS FED	
					(1) Re	eceived M	By/Z) H			(2) Re		•			CoC	2
•					(1) Date / Time $4 - 2 - 1 - 1 - 12.53$?	(2) Date / Time				Seal Int	act?		
Route Results Through: saitken@suvswd.org					(1) Co	ompan	/				(2) Co	mpan	iy 🗌			Yes	No

www.enviroprolabs com

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax 801-964-2721

Chain of Custody Record

Date: <u>L1-21-11</u>

•

•••

Page: 3 of 5

Scott Aitken		489-3027	80	1-491-9367						ļ	Analys	sis l	Requ	lest		Preserv Cod	
Contact Name South Utah Valle Company Name		hone Number te District		Fax Number		ers		000			(CI-).			, Ba, Ag,		1 = 4°C	
2450 West 400 \$	South				de l	of Containers		00 8(1500 20B			b, As 1, Se,		2 = HN	-
Street Address							e	U U U U	540C		te 23			Va, Sl b, N 245.1		3 = HCI	
Springville, UT 8	4663				- S -	Ŭ	Siz	IH3C	DS 2		Chlol 2), bona	г.		K, N Cu, F Hg		4 ≍ H₂S	
City, State, Zip Project Name Baywrew (GMd F,) Site Location					Preservation Code		Container Size	Ammonia 4500NH3G, COD 8000	Nitrate 352.1, TDS 2540C	51	Ph 4500(H+)B, Chloride 4500 (Cl-). Sulfate D-516 (02), Carbonate/Bicarbonate 2320B	EDB/DBCP 504.1	60B	Ca, Fe, Mg, Mn, K, Na, Sh, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl. V, Zn 200.7 Hg 245.1		5 = H ₃ P 6 = Na ₂	
Project Name Sample ID	Date Collected	Time	Matrix	Lab ID	Pres	Number	Cont	Ammon	Nitrate	TOC 415 1	Ph 4500 Sulfate] Carbonz	EDB/DI	VOC 8260B	Ca, Fe, I Be, Cd, Tl, V, Z		C <u>o</u> mm	ents
DMW 3	4-21-11	9:30-9:34	Water	11/083	4	1	IL	1									
	•	a131-9:39	Water	111054	1	1	500		1								
		9:413 .4.11		111085	5	3	40	ļ		1							
		9:34-9:39		11080	1	1	IL				√						
		642.9:43	Water	11087	6	3	40					1				•	
		ci (11, 11:05	Water	111088	3	2	40						_√				
		G126 a.ui	Water	111089	2		500										
Special Instruction	ns / Comments	3 3			(1).B.		hed By	~~~~	~		(2) Re	linqui	shed E	Зу		Satopler In	
						ate / Ti 2 / - /		17	.5	7	(2) Da	te / Ti	ime			More of SI	hipment
					(1) C	ompan					(2) Co	mpan	y			HAND C/ USPS FED	
· · · ·					(1) R	eceived			۰		(2) Re		•	_		CoC	2
	·				(1) Date / Time 4-21-11 12:52					2	(2) Date / Time				Seal Int	act?	
Route Results Through	Coute Results Through. saitken@suvswd.org					ompan	i				(2) Co	mpan	У			Yes	No .

www enviroprolabs.com

t

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax: 801-964-2721

Y

Chain of Custody Record

Date: 4-21-11

Page: 4 of 5

Scott Aitken		189-3027	80	1-491-9367						Å	Analys	sis I	Requ	lest	Preser Co	
Contact Name South Utah Valle		one Number		Fax Number											 0	ue
Company Name	y Solid Was					Sie		00			Ci-)			Ag,	1 = 4°(c
2450 West 400 S	South				व	in		08 0			00 (Se, As,	2 = HN	1O ₃
Street Address					Code	nta		CO	50		le 4 <u>5</u> 232			, Sb 15.1	3 = HC	
Springville, UT 8	4663					S	ĬZ	13G,	\$ 254		llorio , mate			, Na I, Pb Ig 24	$4 = H_2$	SO₄
City, State, Zip					₽	of Containers	S .	INO	1, TDS 2540C		5 (C) e	64.1		fi c. A.O.	5 = H ₃ I	PO₄
			Barri	tw landfil	Preservation	er	Container Size	Аттоліа 4500NH3G, COD 8000	52 l,	****	H+)E -516 e/Bic	CP 5	g	500. 200.	6 = Na	₂ S ₂ O ₃
Project Name			Site Loc	ation	Se	d m	nta	JUOU	te 35	415	on at D	<u>B</u>	VUC 8260B	, Zn Cd, C		
Sample ID	Date Collected	Time	Matrix	Lab ID	Pre	Number	S	Атл	Nitrate 352	TOC 415 1	Ph 4500(H+)B, Chloride 4500 (Cl-). Sulfate D-516 (02), Carbonate/Bicarbonate 2320B	EDB/DBCP 504.1	VUC	Ca, Fe, Mg, Mn, K, Na, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, NI, Se, Ag, Tl, V, Zn 200.7 Hg 245.1	Comn	nents
DMW 9		8:43.8:45	Water	11/090	4	1	IĿ	√							 	
		8:49-8:51	Water	111091	I	1	500		1			_		_	·	
		8:57-8:59	Water	111092	5	3	40			<u> </u>					 	
		5:45-8:49	Water	111093	1	1	IL				1				 	
		855 857	Water	111094	6	3	40					1		_	 	
		853-854	Water	111095	3	2	40						\checkmark		 	
		8:51-8:53	Water	111096	2	1	500							1	 	
					ļ										 	
					ļ										 -	
O si al la atau di					(1) D	llaguid	hed By				(2) Rel		abod C	2	 Sampier	Initialar
Special Instruction	s / Comments	i			k			\sim	-		(2) Rei	inqui	sneu c	у		initiais.
					(1) Di	ate / Tid	ne	0			(2) Dat	e/T	me	•	 Method of:	Shipment
					4-2		17	.5	7	. 1						
						ompany	้ 5. V	υĩ	>		(2) Cor	npan	У		HAND C USPS FEI	
					(1) Re	eceived	By/	\mathcal{T}	>		(2) Red	ceive	d By		Co	С
						ate / Tir -21-1		25	57		(2) Dat	e / Ti	me		 Seal In	tact?
Route Results Through: saitken@suvswd.org						ompany					(2) Cor	npan	У		 Yes	No

www.enviroprolabs com

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax: 801-964-2721

Chain of Custody Record

Date: 4-21-11

Page. 5 of 5

Scott Aitken	Scott Aitken801-489-3027801-491-9367Contact NamePhone NumberFax Number									4	Analys	sis I	Requ	lest		Preservation Code
South Utah Valle				Fax Number		ဖ					(-			தீல்		1 = 4°C
Company Name 2450 West 400 \$	South				de	ainei	I	D 800		•	500 (C 20B			o, As, B I, Se, A		2 = HNO ₃
Street Address Springville, UT 8	4663		· · ·	•	n Code	Cont	Size	I3G, CC	S 2540C		iloride 4), inate 23			c, Na, SI 1, Pb, Ni 1 <u>g</u> 245.1		3 = HCI 4 = H₂SO₄
City, State, Zip					Preservation	Number of Containers	Container Size	Ammonia 4500NH3G, COD 8000	Nitrate 352 1, TDS 2540C	1	Ph 4500(H+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Carbonate/Bicarbonate 2320B	EDB/DBCP 504.1	OB	Ca, Fe, Mg, Mn, K, Na, Sh, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn 2007 Hg 245.1		5 = H ₃ PO ₄ 6 = Na ₂ S ₂ O ₃
Project Name	·		Site Loc	ation	Se	l qu	ita	onia	e 35	415.	00(F D D	DB(826	d, C Zn Zn		
Sample ID	Date Collected	Time	Matrix	Lab ID	Pre	Nur	Col	Amm	Nitral	TOC 415.1	Ph 45 Sulfa Carbo	EDB/	VOC 8260B	Ca, F Be, C		Comments
DMW 6	4-21-11	7:413-7.55	Water	111097	4	1	1L	V					_			
		8.05 - 8.04	Water	111098	1	1	500		\checkmark							· -
		5.13-315	Water	111099	5	3	40			1						
		1:55 . 301	Water	11100	1	1	1L				√					<u>.</u>
······		8:11-513	Water	·////01	6	3	40					\checkmark				
		8 69 8.11	Water	111.02	3	2	40						√			
		801-3:65	Water	[[[]03	2	1	5 0 0			·····				<u>۷</u>		
					·											·····
Special Instruction	s / Comments	<u> </u>				ho	hed By				(2) Re			Зу		Sampler Initials
						ate / Ti	me `	12'	57		(2) Da	te / T	ime			Method of Shipment
					(1) C	ompan	, <u>SIV</u> .		<u> </u>	, .	(2) Co	-				HAND CARRY USPS FEDX UPS
					(1) R	eceived	By//	D D	5	ł.	(2) Re		-			CoC
	· ·					4-21-11 12-52 (2) Date				(2) Date / Time				Seal Intact?		
Route Results Through	Route Results Through: saitken@suvswd.org					ompan	/			`.	(2) Co	mpar	ıy			Yes No

GROUNDWATER MONITORING PROGRAM BAYVIEW MUNICIPAL SOLID WASTE LANDFILL SOUTH UTAH VALLEY SOLID WASTE DISTRICT

DATE: 2000000 1/25/12 SAMPLED BY: OMBYNESSIN Jeott Altkin / Strue Dansie RECORDED BY: OMBYNESSIN Don Perry

WEATHER:

Well Number	Depth of Well (test)	Depth to Water (feet)	Temp. C <u>. X</u> F	pH	Conductivity	Commanda
DMMM	300		-			
DMW2	278					
DMW3	308	253' 5'	1360	8.19	1234	Sprinkling, cludy
DMW4	195					
DMW5	210					
DAWS	166	157'10''	14.74	8.24	757.5	Cloudy
DMW7	293	270	14.10	8.12	861.0	Cloudy
DAANA	270	253 11"	14.30	8.16	1292,	cloudy slight Brows
DINWA	247	226	14.52	8.29	966.1	Cloud Y

Division of Solid and Hazardous Waste

FEB 2 7 2013 2013-002106

February 25, 2013

Scott Aitken South Utah Valley Solid Waste District P.O. Box 507 Springville, UT 84663

Re: October 2012 Groundwater Monitoring Statistical Results for Bayview Landfill

Dear Mr. Aitken:

HDR Engineering, Inc. (HDR) has prepared this letter report regarding the groundwater monitoring program at the Bayview Landfill. This report summarizes the statistical analyses performed for results from the groundwater sampling conducted in **October 2012.** Attachment 1 contains the control charts and prediction limit graphs used in the statistical analyses. Attachment 2 contains the results of the latest laboratory analyses and the results of the field-measured parameters, including a recording of the static water level found in each well.

Statistical Methods

The initial inter-well analysis of the groundwater chemistry indicated enough variability between wells to justify using an intra-well analysis approach. The results of the inter-well analysis were presented in a report submitted to the Division of Solid and Hazardous Waste on October 8, 1998. A software package called SANITAS, developed by NIC Environmental (formerly Intelligent Decision Technologies of Longmont, Colorado), was used to perform the statistical analysis of the groundwater data.

The statistical analysis approach uses intra-well methods consisting of control charts and prediction limits. The purpose of this analysis is to determine if there are any statistically significant changes in the compliance data relative to background concentrations. These methods establish limit values based on the background water quality data collected for each well.

In the case of control charts, a statistically significant change is based on the standard deviation established by the background data. When using the control charts method, the constituents will have the following characteristics:

• The data will be tested for normality using the Shipiro-Wilk normality test (for <50 samples) or the Shipiro-Francia test (for >50 samples) included in the SANITAS statistical analysis package. The Shapiro-Wilk normality test is the preferred method based on EPA guidance.¹ When data are considered normal, the values are consistent and follow a normal, bell-shaped curve (Gaussian curve). The majority of the values (95%) are within two standard deviations from the mean of the concentration values.

¹ EPA, June 1992. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance. EPA 530SW89026.

October 2012 Groundwater Monitoring Statistical Results February 25, 2013 Page 2 of 7

- The percentage of non-detects will be less than 50%.
- The data will have no statistical trends as shown by the trend analysis plots.
- This method assumes that the landfill has not previously affected the groundwater.

The SANITAS program will not execute a control chart if the data set is transformed normal using Cohen's adjustment. In general, Cohen's adjustment accounts for data that are below the set detection limit or practical quantitation limit (PQL) for the method established by the laboratory. The Cohen adjustment is executed when the data set includes at least 15% non-detects.

The constituents that do not meet all the criteria above are analyzed using a prediction limit (PL). Typically, for inorganic constituents, the preferred method is to use a parametric intra-well analysis approach. Under this approach, the false positive rate or alpha is 0.01 or 1%. The assumption under the parametric approach is that the background data are normal or transformed normal. The PL for a particular constituent is calculated from the mean value (X) of the entire background data set, excluding the most recent data point, using the following equation:

PL = Mean (X) + (T-value × Standard Deviation) Note T-value from standard statistical tables

Not all constituents in this data set allow the use of a parametric approach. A non-parametric approach will be used in lieu of a parametric approach if the data set fails the normality test using the Shipiro-Wilk normality test, cannot be transformed normal, and has between 50% and 90% non-detects. When the data set has greater than 90% non-detects, an intra-well Poisson PL is executed, and the non-detect values are substituted with one-half the detection limit. Data that fall under the Poisson criteria have a low probability of detection but stay constant from sampling period to sampling period.² When a non-parametric approach is applied, the highest background concentration from the data set is used for the PL.

Summary of Statistical Analysis

The statistical analysis is for data collected from wells DMW-3, DMW-6, DMW-7, DMW-8, and DMW-9 during the period from March 1991 through October 2012. The background sampling was performed from March 1991 to June 1992. Well DMW-7 is located upgradient from landfill Cell #1. Wells DMW-3 and DMW-8 serve as downgradient compliance wells for landfill Cell #1. Monitoring well DMW-6 is east of the leachate pond. Monitoring well DMW-9 serves as a downgradient well for the initial phases of Cell #2. Background samples from DMW-9 were collected between December 2004 and October 2007.

The laboratory analytical results were reviewed to determine whether a statistical analysis was needed. If the laboratory results reported a non-detect for a particular constituent from a particular monitoring well, no statistical analysis was conducted for that constituent. However, the information was placed in the groundwater quality database to maintain a complete record.

No volatile organic constituents (VOCs) were detected in any well. Therefore, no statistical analysis was conducted for VOCs

² EPA, June 1992. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance. EPA 530SW89026.

October 2012 Groundwater Monitoring Statistical Results February 25, 2013 Page 3 of 7

Statistically Significant Changes

The data were analyzed using control charts (titled Combined Shewhart-Cusum Charts) and PL graphs to determine if there were any statistically significant changes from background levels. Only statistically significant changes in the reported values from the latest sampling event are reported here.

Upgradient Monitoring Weil

<u>DMW-7</u>

No statistically significant changes detected in data.

Compliance Monitoring Wells

<u>DMW-3</u>

The laboratory reported pH (7.4) was determined by Sanitas to be a statistically significant change. The reported pH concentration, however, is within the control limits. A statistically significant change is reported because the low-CUSUM line on the control chart shows a trend that is below the lower control. Compared to background concentrations in DMW-7, the reported pH concentration in DMW-3 appears to be within the natural variability of pH concentrations in groundwater at the site. In addition, the reported concentration is within the Utah Ground Water Quality Standards, which ranges from 6.5 to 8.5.³

<u>DMW-8</u>

No statistically significant changes detected in data.

<u>DMW-9</u>

The statistical analysis conducted on the concentrations of sulfate in this compliance monitoring well show a statistically significant change compared to background concentrations in groundwater from this well. The reported concentration of sulfate (66.1 mg/L) from the latest sampling event is within control limits. However, the CUSUM line, which represents a long-term trend, exceeded the limit. This upward trend in the CUSUM line was caused by one sample, from May 2010 (159 mg/L), being elevated. When the EPA 1989 statistical outliers test is applied to the entire DMW-9 sulfate data set, the May 2010 concentration is determined to be an outlier. The October 2012 result is the fifth consecutive sulfate concentration reported by the laboratory that falls within the control limit (see the control charts and EPA outliers test results provided in Attachment 1).

The reported concentration of iron (0.043 mg/L) was not a statistically significant increase compared to background concentrations in this compliance well for October. The reported concentration from the April 2012 sampling(0.092 mg/L) was a statistically significant increase above background concentrations. Iron concentration in groundwater from this well appears to have dropped to back to background levels by October 2012.

The statistical analysis conducted for the latest sampling event for sodium (NA) indicated a statistically significant change from background concentrations. The reported concentration of sodium (109 mg/L) is

³ Utah Administrative Code Rule 317-6

October 2012 Groundwater Monitoring Statistical Results February 25, 2013 Page 4 of 7

within control limits. However, the CUSUM trend line exceeded the limit as in the April 2012 sampling. All sodium concentrations in the data set for DMW-9 have remained below the control limit. While there is a general upward trend in sodium concentrations in DMW-9, the concentrations (ranging from about 90 to 109 mg/L) are all close to the concentration in background samples collected from other upgradient wells. For example, the reported concentrations of sodium in both upgradient and down gradient wells collected during background sampling events average from about 100 to 130 mg/L with background concentrations as high as 150 to 160 mg/L in DMW-3. This indicates the April and October 2012 concentrations in DMW-9 remains near naturally occurring sodium levels.

No other statistically significant changes were detected in the laboratory data for this well.

Leachate Pond Monitoring Well

<u>DMW-6</u>

The laboratory reported a chloride concentration of 93.9 mg/L in this compliance monitoring well. The statistical analysis conducted for this sampling event noted a statistically significant change from background sampling concentrations. The laboratory determined that the concentration is below the background control limits (109.6 mg/L); however a statistical significant change is reported because the CUSUM trend line for chloride remains above the control limits. The cause of the trend line exceeding the limits was due to a reported chloride concentration of 129 mg/L from the April 2011 sampling event. When the EPA 1989 statistical outliers test is applied to the entire DMW-6 chloride data set, the April 2011 concentration is determined to be an outlier (see EPA outliers test results provided in Attachment 1). Laboratory results from the last three sampling events report chloride concentrations below the control limit and the CUSUM line is trending down. As detection monitoring continues and concentrations remain below background control limits, the CUSUM trend line will continue to fall back below the established limits.

The laboratory reported pH (7.6) was noted as a statistically significant change from background pH levels. The reported pH concentration is within the control limits; however, a statistically significant change is reported because the low-CUSUM line on the control chart shows a trend that is below the lower control. Compared to background concentrations in upgradient well DMW-7, the reported pH concentration in DMW-6 appears to be within the natural variability of pH concentrations in groundwater at the site. In addition, the reported concentration is within the Utah Ground Water Quality Standards, which ranges from 6.5 to 8.5.⁴

The laboratory reported a nitrate concentration (1.10 mg/L) in this compliance monitoring well. The statistical analysis noted a statistically significant change from background sampling concentrations. The reported concentration is below the background control limits (1.66 mg/L); however the reported statistically significant change was due to the CUSUM trend line for nitrate remaining above the control limits. When compared to the mean nitrate concentration in DMW-7 (5.06 mg/l), which serves as an up gradient compliance well, the data indicates that the concentration detected in the October 2012 sampling event is well within naturally occurring nitrate concentrations in the area. The State of Utah does not have groundwater standards for nitrate.

⁴ Utah Administrative Code Rule 317-6

October 2012 Groundwater Monitoring Statistical Results February 25, 2013 Page 5 of 7

No other statistically significant changes in the data were noted.

Conclusions

Statistical analysis conducted for the October 2012 groundwater sampling event indicate statistically significant changes in chemical concentrations from compliance monitoring wells DMW-3, DMW-6 and DMW-9. However, none of the statistically significant changes were a result of the chemical concentrations from the latest sampling event. Considering the background concentrations in these compliance wells and the concentrations in upgradient wells, the reported chemical concentrations from the October 2012 sampling event appear to be near naturally occurring levels.

If you have any questions regarding this letter or the results of the analysis, please contact me at (801) 743-7812.

Sincerely,

Trythme

Terry Warner, PE HDR Engineering, Inc.

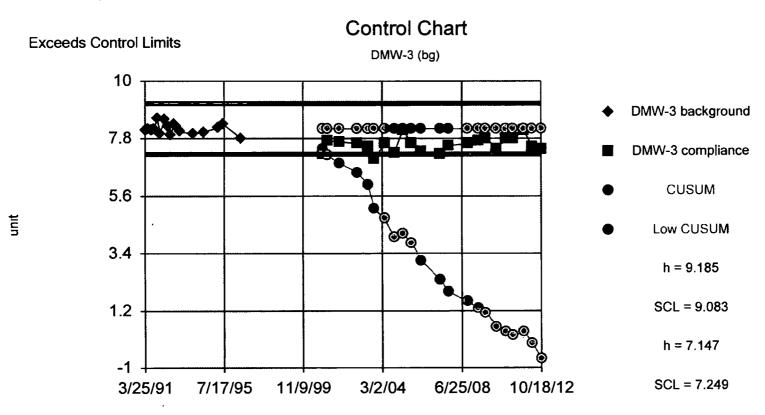
Attachment 1: Control charts and prediction limit graphs Attachment 2: Results of laboratory analysis, field-measured parameters, and chain of custody form October 2012 Groundwater Monitoring Statistical Results February 21, 2013 Page 6 of 7

.

.

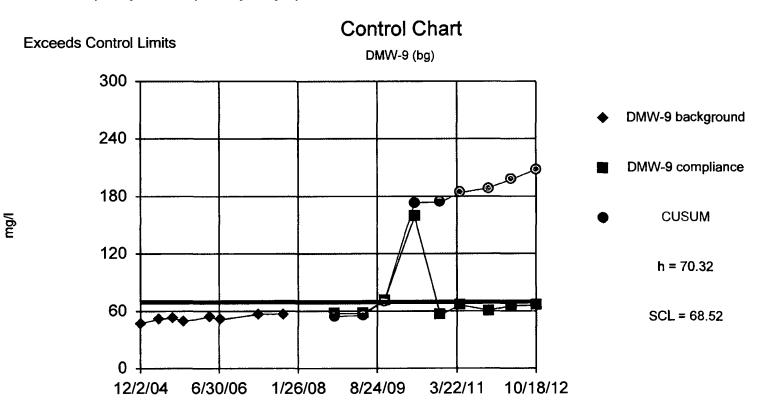
.

Attachment 1


•

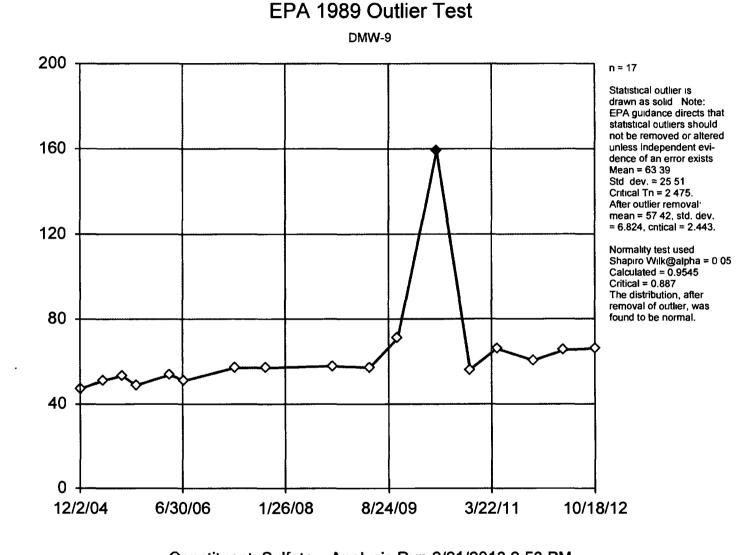
Statistical Analysis Results

,


.

v.9 0 27 For the statistical analyses of ground water by HDR Engineering only EPA

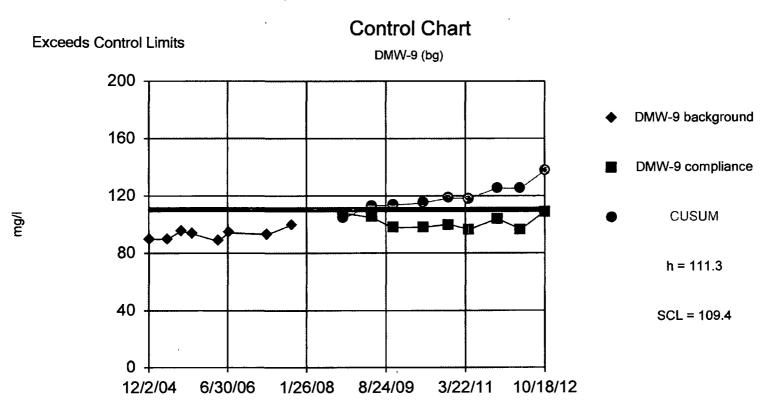
Background Data Summary: Mean=8.166, Std. Dev.=0.2037, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9768, critical = 0.892. Dates ending 6/26/1996 used for control stats.


Constituent: pH Analysis Run 2/21/2013 12:00 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet v.9 0 27 For the statistical analyses of ground water by HDR Engineering only EPA

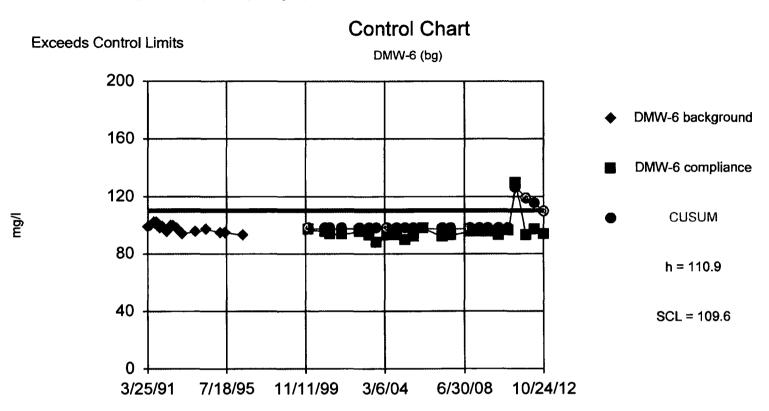
•. •

Background Data Summary: Mean=52.35, Std. Dev.=3.594, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9434, critical = 0.818. Dates ending 10/10/2007 used for control stats.

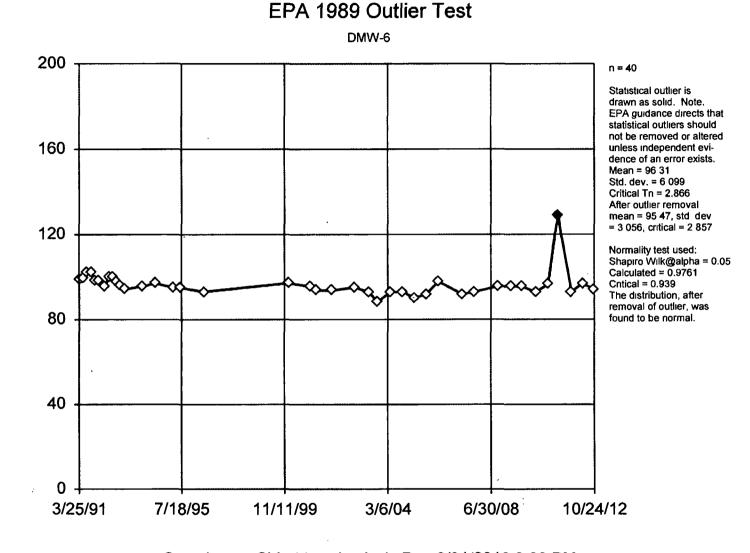
Constituent: Sulfate Analysis Run 2/21/2013 12:31 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet



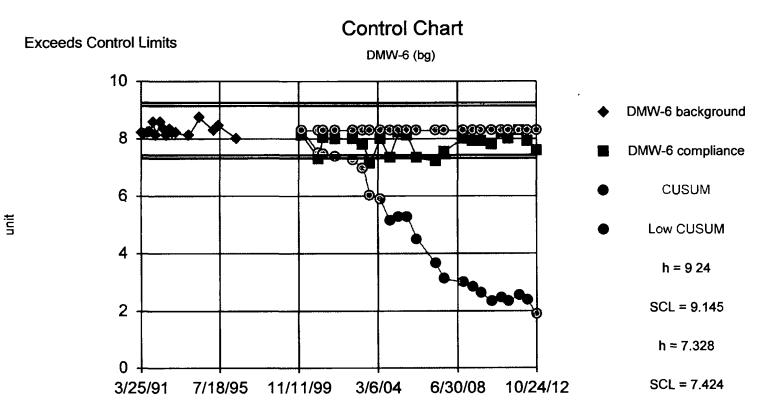
٠.


mg/l

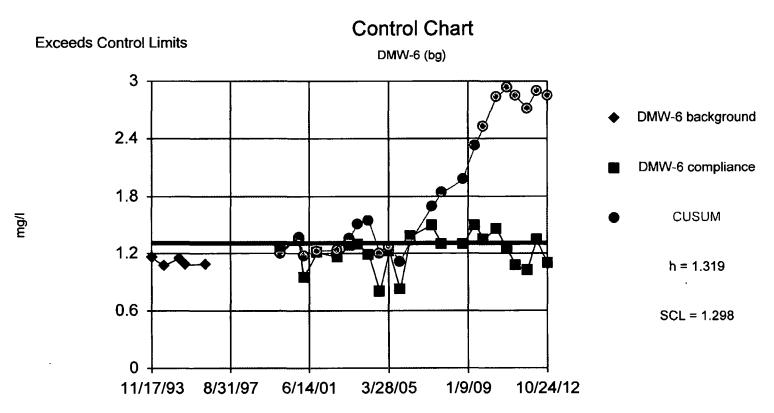
v 9 0 27 For the statistical analyses of ground water by HDR Engineering only EPA


Background Data Summary: Mean=93.03, Std. Dev.=3.645, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9447, critical = 0.818. Dates ending 10/10/2007 used for control stats.

Constituent: Na Analysis Run 2/21/2013 12:31 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet v.9.0 27 For the statistical analyses of ground water by HDR Engineering only. EPA


Background Data Summary: Mean=97.54, Std. Dev.=2.675, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9621, critical = 0.892. Dates ending 6/26/1996 used for control stats.

Constituent: Chloride Analysis Run 2/21/2013 12:15 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet


Constituent: Chloride Analysis Run 2/21/2013 3:09 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet

mg/l

Background Data Summary: Mean=8.284, Std. Dev.=0.1912, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9169, critical = 0.892. Dates ending 6/26/1996 used for control stats.

Constituent: pH Analysis Run 2/21/2013 12:15 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet v.9.0.27 For the statistical analyses of ground water by HDR Engineering only EPA

Background Data Summary: Mean=1.11, Std. Dev.=0.04183, n=5. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8405, critical = 0.762. Dates ending 6/26/1996 used for control stats.

Constituent: Nitrate Analysis Run 2/21/2013 12:15 PM Facility: Bayview Landfill Client: SUVSWD Data File: Copy of Copy (2) of sanits ground water spreadsheet October 2012 Groundwater Monitoring Statistical Results February 21, 2013 Page 7 of 7

•

•

.

.


1

Attachment 2

Field Monitored Data

Laboratory Results

Chain of Custody

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs.com

heat		Analy	tical Test Res	ults				
South Utah Valley	Solid Waste		PO# / Project Nan	ne: Bayvie	w			
Scott Aitken			-					
P.O. Box 507		Da	ate / Time Receive	ed: 10/18/2	2012 14	:18		
Springville, UT 8	4663-0507		Date Report	ed: 11/7/20	012			
Sample Name: DN		······································				Lab ID#: 2920	02A	
Collection Began:		Collecti	on Completed:]	0/18/2012	8:48	Matrix: Wast	ewater	
			Analysis					
Parameter								
					-			
Chemical Oxygen Den	nand	8000	10/19/2012 12:19	10	mg/L	<10	SI	
Sample Name: DN	IW7					Lab ID#: 2920	02B	
Collection Began:	Not Applicable	Collection	on Completed: 1	0/18/2012	8:48	Matrix: Wast	ewater	
Parameter		Method	Analysis Date / Time	MRL	Units	Results	Flags	
Nitrate (NO3-N)		352.1	10/19/2012 16:35	0.2	mg/L	5.42	S	
Total Dissolved Solids	(TDS)	2540C	10/19/2012 11:08	20	mg/L	548	9	
Sample Name: DM	IW7					Lab ID#: 2920	02C	
Collection Began:	Not Applicable	Collectio	on Completed: 1	0/18/2012	8:48	Matrix: Wast	ewater	
Barameter		Mothod	Analysis	MÐI	Ilaita	Bèculto	Elana	
	TOCI							
		2W2310B	10/19/2012 15:12	1	mg/L	1.70		
			_					
Collection Began:	Not Applicable	Collectio	on Completed: 10	0/18/2012	8:48	Matrix: Wast	ewater	
Parameter		Method	Analysis <u>Date / Time</u>	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>	
				1		151		
				1	-			
Chloride			-	2	-			
				_		4		н
Sulfate		D-516 (02)	10/30/2012	5	mg/L	196		
-	Analytical Test Results South Utah Valley Solid Waste Scott Altken PO# / Project Name: Bayview South Utah Valley Solid Waste Scott Altken PO# / Project Name: Bayview South Utah Valley Solid Waste Scott Altken Date / Time Received: 10/18/2012 14:18 Date Reported: 11/7/2012 Imple Name: DMW7 Lab ID#: 292002A Immemia (NH3-N), Direct ISE Mothod 4500(NH3)E Analysis Date / Time Date / Time Mathod MRL Units Results Flags Imple Name: DMW7 Collection Completed: 10/18/2012 8:48 Matrix: Wastewater -							
Collection Began:	Not Applicable	Collectio	on Completed: 1(0/18/2012	8:48	Matrix: Waste	ewater	
Parameter		Method		MRI	Unite	Resulte	Flage	
	ropane							
1,2-Dibromoethane	apano -							
· != =		JUT.1		0.0101	-9	~0,0101	-	

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Sample Name: DMW3					Lab ID#: 2920	
Collection Began: No Apple and	Collec	tion Completed:	10/18/2012	10:01	Matrix: Was	ewater
Parameter	<u>Method</u>	Analy sis <u>Date / Time</u>	MRL	<u>Units</u>	<u>Results</u>	Flags
Volatiles Prep	5030A	10/24/2012			•	
1,1,1,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,1-Trichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2-Trichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2-Trichlorotrifluoroethane	: 8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloroethene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloropropene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,3-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,3-Trichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,4-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,4-Trimethylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2-Dichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,3,5-Trimethylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,3-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,3-Dichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,4-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
2,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
2-Butanone(MEK)	8260B	10/24/2012	0.01	mg/L	<0.01	
2-Chlorotoluene	8260B	10/24/2012	0.005	mg/L	<0.005	
2-Nitropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
4-Chlorotoluene	8260B	10/24/2012	0.005	mg/L	<0.005	
4-Methyl 2-pentanone (MIBK)	8260B	10/24/2012	0.02	mg/L	<0.02	•••
Acetone	8260B	10/24/2012	0.02	mg/L	<0.02	
Benzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Bromobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Bromochloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Bromodichloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Bromoform	8260B	10/24/2012	0.005	mg/L	< 0.005	
Bromomethane	8260B	10/24/2012	0.005	mg/L	<0.005	
Carbon Disulfide	8260B	10/24/2012	0.005	mg/L	< 0.005	
Carbon Tetrachloride	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chloroform	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	10/24/2012	0.005	mg/L	<0.005	
Cyclohexanone	· 8260B	10/24/2012	0.005	mg/L	< 0.01	•
Dibromochloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Dibromomethane	8260B 8260B	10/24/2012	0.005	mg/L	<0.005	
Dichlorodifluoromethane	8260B 8260B	10/24/2012	0.003	mg/L	<0.003 <0.005	
Ethyl Acetate	8260B 8260B	10/24/2012	0.003	mg/L	<0.003	
Ethyl Ether	8260B 8260B	10/24/2012	0.02	mg/L	<0.02 <0.01	
Ethylbenzene						
	8260B	10/2472012	0.005	mg/L	<0.005	mm (nelan)

. , y

=

•

Sample Name: DMW		Calles	tion Completed	10/10/0010	0.40	Lab ID#: 2920 Matrix: Was	'
Collection Began: N	lot Applicable	Collec	tion Completed:	10/18/2012	8:48		lewaler
Parameter		Method	Analysis <u>Date / Time</u>	MRL	<u>Units</u>	Results	<u>Flags</u>
-lexachlorobutadiene		8260B	10/24/2012	0.005	mg/L	< 0.005	
sopropylbenzene		8260B	10/24/2012	0.005	mg/L	< 0.005	
n,p-Xylenes		8260B	10/24/2012	0.005	mg/L	<0.005	
Aethylene Chloride		8260B	10/24/2012	0.01	mg/L	<0.01	
ATBE		8260B	10/24/2012	0.005	mg/L	<0.005	
Naphthalene		8260B	10/24/2012	0.01	mg/L	<0.01	
-Butylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
-Propylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
-Xylene		8260B	10/24/2012	0.005	mg/L	<0.005	
-Isopropyltoluene		8260B	10/24/2012	0.005	mg/L	<0.005	
ec-Butylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
ityrene		8260B	10/24/2012	0.005	mg/L	<0.005	
ert-Butylbenzene		8260B	10/24/2012	0.005	mg/L	< 0.005	
etrachloroethylene		8260B	10/24/2012	0.005	mg/L	< 0.005	
oluene		8260B	10/24/2012	0.005	mg/L	<0.005	
ans-1,2-Dichloroethene		8260B	10/24/2012	0.005	mg/L	<0.005	
nchloroethene		8260B	10/24/2012	0.005	mg/L	< 0.005	
richlorofluoromethane		8260B	10/24/2012	0.005	mg/L	<0.005	
/inyl Chloride		8260B	10/24/2012	0.005	mg/L	<0.005	_
Sample Name: DMW7	1					Lab ID#: 2920	02 1
	lot Applicable	Collect	tion Completed:	10/18/2012	8:48	Matrix: Wast	lewater
aramatar		Mothod	Analysis	MPI		Beaulte	
		Method	Date / Time	MRL	<u>Units</u>	Results	Flags
ntimony		200.8	Date / Time 11/1/2012	0.1	µg/L	0.82	Flags
ntimony rsenic		200.8 200.8	<u>Date / Time</u> 11/1/2012 11/1/2012	0.1	µg/L µg/L	0.82 35.3	Flags
ntimony rsenic arium		200.8 200.8 200.7	Date / Time 11/1/2012 11/1/2012 10/31/2012	0.1 1 0.005	μg/L μg/L mg/L	0.82 35.3 0.022	
ntimony rsenic arium eryllium		200.8 200.8 200.7 200.8	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012	0.1 1 0.005 0.5	µg/L µg/L mg/L µg/L	0.82 35.3 0.022 <0.5	Flags UJ
ntimony Irsenic Iarium Beryllium Badmium		200.8 200.8 200.7 200.8 200.8	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012	0.1 1 0.005 0.5 0.5	μg/L μg/L mg/L μg/L μg/L	0.82 35.3 0.022 <0.5 <0.5	
antimony arsenic arium leryllium cadmium calcium		200.8 200.8 200.7 200.8 200.8 200.8 200.7	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012	0.1 1 0.005 0.5 0.5 0.05	µg/L µg/L mg/L µg/L µg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2	
ntimony rsenic arium eryllium admium alcium hromium		200.8 200.8 200.7 200.8 200.8 200.8 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012	0.1 1 0.005 0.5 0.5 0.05 0.01	yg/L µg/L mg/L µg/L µg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01	
ntimony rsenic arium eryllium admium alcium hromium obalt		200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	µg/L µg/L µg/L µg/L mg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05	
ntimony rsenic arium eryllium admium alcium hromium obalt opper		200.8 200.8 200.7 200.8 200.8 200.8 200.7 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.05 0.01 0.05 0.05	µg/L µg/L µg/L µg/L mg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05	
Intimony Internic Iarium Iaryllium Iardmium Iardium Ishromium Isobalt Isopper		200.8 200.8 200.7 200.8 200.8 200.8 200.7 200.7 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.05 0.02	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031	
Intimony Intimony Intervention		200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 11/1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.02 1	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1	
Intimony Irsenic Sarium Beryllium Badmium Salcium Schromium Sobalt Sopper Son Bagnesium		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.02 1 0.05	µg/L µg/L µg/L µg/L mg/L mg/L mg/L µg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4	
ntimony rsenic arium eryllium admium alcium hromium obalt opper on ead lagnesium langanese		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 10/3 1/2012	0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.01	µg/L µg/L µg/L µg/L mg/L mg/L mg/L µg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01	
ntimony rsenic arium eryllium admium alcium hromium obalt opper on ead agnesium anganese ercury		200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.002	yg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.002	
ntimony rsenic arium eryllium admium admium obalt opper on ead agnesium anganese ercury ickel		200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 10/3 1/2012 10/26/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.002 <0.05	
ntimony rsenic arium eryllium admium alcium hromium obalt opper on ead agnesium anganese ercury ickel otassium		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/26/2012 10/26/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.0002 <0.05 6.87	
ntimony rsenic arium eryllium admium alcium hromium obalt opper on ead agnesium anganese ercury ickel otassium elenium		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 11/1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.0002 <0.05 6.87 4.73	
ntimony rsenic arium eryllium admium alcium hromium obalt opper on ead agnesium anganese ercury ickel otassium elenium		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 10/26/2012 10/3 1/2012 10/19/2012 10/19/2012 10/19/2012 11/1/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.002 0.05 0.2 2 0.01	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.0002 <0.05 6.87 4.73 <0.01	
Intimony Intimony Intervention		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/26/2012 10/31/2012 10/19/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012	0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2 0.01 1	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L mg/L µg/L mg/L	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.0002 <0.05 6.87 4.73 <0.01 130	
Parameter Antimony Arsenic Barium Beryllium Bardmium Balcium Chromium Balcium Chromium Bagnesium Bagnesium Bagnesium Bagnesium Bagnesium Bagnesium Banganese Bercury Iickel Otassium Belenium Bilver Odium hallium		200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Date / Time 11/1/2012 11/1/2012 10/3 1/2012 11/1/2012 10/19/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/3 1/2012 10/19/2012 10/19/2012 10/26/2012 10/3 1/2012 10/19/2012 10/19/2012 10/19/2012 11/1/2012 10/3 1/2012	0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.002 0.05 0.2 2 0.01	µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	0.82 35.3 0.022 <0.5 <0.5 29.2 <0.01 <0.05 <0.05 0.031 <1 10.4 <0.01 <0.0002 <0.05 6.87 4.73 <0.01	

•

.

•

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Order 7297 Page 3 of 4

ENVIROPRO LABORATORIES

.

www.enviroprolabs.com

• ...

.

Chain of Custody Record

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax: 801-964-2721

16"

. •

. 2

Date: 10-/8-12

Page: 1 of 5

Scott Aitken		89-3027 one Number	80	1-491-9367 Fax Number					·	1	Analy	sis I	Requ	uest	Preservation Code
South Utah Vall Company Name 2450 West 400	ey Solid Wast		··-·· -··		0	iners		0008 0			00 (CI-), JB			As, Bg Se, Ag,	1 = 4°C 2 = HNO ₃
Street Address Springville, UT & City, State, Zip					Preservation Code	Number of Containers	Contaí ne r Size	Ammonia 4500NH3G, COD 8000	Nitrate 352.1, TDS 2540C		Ph 4500(11+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Carbonate/Dicarbonate 2320B	EDB/DBCP 504.1		Ca, Fe, Mg, Mn, K, Na, Sh, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn 200.7 Hg 245.1	3 = HCI $4 = H_2SO_4$ $5 = H_3PO_4$
BoyWite Project Name			Site Loc	ation	S S	pe	taí	nia 4	352	15.1	10.25	D a	260	N N N N N N N N N N N N N N N N N N N	$6 = Na_2S_2O_3$
Sample ID	Date Collected	Time	Matrix	Lab ID	Pres	Num	Cont	Ammoi	Nitrate	TOC 415.1	Ph 450 Sulfate Carbon	EDB/D	VOC 8260B	Са, Fe, H, V, 2 , 2	Comments
DMWT	10-18-12	3:49	Water	-1912002A	4	1	1L	V	1						
		8:52	Water	2972002B	1	1	500		1						
		8 57	Water	19:002C	5	3	40			1					
		8.5r	Water	17920020	1	1	IL				1				
		8 58	Water	292007E/F	6	3	40			ļ	 	1			
		9.41 1	Water	29200ZG/H	3	2	40						1	<u> </u>	
	+	8:55	Water	2972002T	2		500				[
			<u> </u>		<u> </u>	┠						<u> </u>			
Special Instructio	ns / Comments				(1) R		shept By	_	\sim		(2) Re			Ву	Pampler Initials:
Report as E		Javal Can				ato / Ti		2:1	5		(2) Da	ite / T	ime		Method of Shipment
NEVEL 1 185 5	inci I	man wp	¥		(1) C	ompan UV	Su		{		(2) Co	mpai	ıy		HAND CARRY USPS FEDX UPS
					(1) R	eseiwe	By			_	(2) Re	ceive	d By		CoC
				· · · · · · · · · · · · · · · · · · ·	(1) P		5/17	21	4.	17	(2) Da	ite / T	ime		Seal Intact?
Route Results Throu	gh: saitken@suvsv	vd.org			(1) C	ompan	7				(2) Co	mpar	iy		Yes No

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs.com

neac		Analy	tical Test Res	ults									
South Utah Valley S	olid Waste	F	PO# / Project Nan	ne: Bayvie	w								
Scott Aitken													
P.O. Box 507		Date / Time Received: 10/18/2012 14:18											
Springville, UT 846	63-0507		Date Reporte	ed: 11/7/20	012								
Sample Name: DMW	13		, , , , , , , , , , , , , , , , , ,			Lab ID#: 2920	09A						
Collection Began:	Not Applicable	Collecti	on Completed: 1	0/18/2012	10:01	Matrix: Wast	ewater						
Parameter		Method	Analysis Date / Time	MRL	Units	Results	Flags						
Ammonia (NH3-N), Direc	+ ISE		10/19/2012 14.20	0.2	mg/L	<0.2	S						
Chemical Oxygen Demar		4500(NH3)E 8000	10/19/2012 12:19	0.2 10	mg/L	<0.2 14	SI						
		8000	10/17/2012 12:19	10		14 							
Sample Name: DMW	13					Lab ID#: 2920	09B						
Collection Began:	Not Applicable	Collectio	on Completed: 1	0/18/2012	10:01	Matrix: Wast	ewater						
			Analysis	MDI	11-14-	Desults	Flore						
Parameter		<u>Method</u>	Date / Time	MRL	<u>Units</u>	<u>Results</u>	Flags						
Nitrate (NO3-N)	201	352.1	10/19/2012 16 35	0.2	mg/L	1.56	91						
Fotal Dissolved Solids (T	DS)	2540C	10/19/2012 11.08	20	mg/L	702	91						
Sample Name: DMW	13					Lab ID#: 2920	09C						
Collection Began:	Not Applicable	Collectio	on Completed: 1	0/18/2012	10:01	Matrix: Wast	ewater						
· · · ·			Analysis										
Parameter		<u>Method</u>	Date / Time	<u>MRL</u>	<u>Units</u>	<u>Results</u>	<u>Flags</u>						
otal Organic Carbon (TC)C)	SM5310B	10/19/2012 16.14	1	mg/L	<1	S2						
Sample Name: DMW	3					Lab ID#: 2920	09D						
Collection Began:	NOL APPRICADIC	Collectio	on Completed: 1	0/1 8 /2012	10:01	Matrix: Wast	ewa ter						
Parameter		Method	Analysis Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u>						
Bicarbonate (as CaCO3)		2320B	11/6/2012	1	mg/L	150							
arbonate (as CaCO3)		2320B	11/6/2012	1	mg/L	<1							
Chloride		4500 (Cl-)	10/31/2012	2	mg/L	213							
H Units		4500(H+)B	10/19/2012 15.35		ρН	7.4@20°C		н					
Sulfate		D-516 (02)	10/30/2012	5	mg/L	134							
ample Name: DMW	3					Lab ID#: 2920	09E						
collection Began:	Not Applicable	Collectio	on Completed: 10	0/18/2012	10:01	Matrix: Wast	ewater						
Parameter		Method	Analysis Date / Time		linita	Desulte	Elega						
			Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u>						
2-Dibromo 2 Chlorence	1000												
,2-Dibromo-3-Chloroproj ,2-Dibromoethane	bane	504.1 504.1	10/19/2012 11·29 10/19/2012 11 29	0.0102 0.0102	μg/L μg/L	<0.0102 <0.0102	8 8						

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program nelap

,

Sample Name: DM Collection Began:		Colleo	tion Completed:	10/18/2012	10-01	Lab ID#: 2920 Matrix: Was	
	Not Applicable			10/10/2012	10.01		
Parameter		Method	Analysis Date / Time	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
lexachlorobutadiene		8260B	10/24/2012	0.005	mg/L	< 0.005	
opropylbenzene		8260B	10/24/2012	0.005	mg/L	< 0.005	
,p-Xylenes		8260B	10/24/2012	0.005	mg/L	< 0.005	
ethylene Chloride		8260B	10/24/2012	0.01	mg/L	<0.01	
TBE		8260B	10/24/2012	0.005	mg/L	<0.005	
aphthalene		8260B	10/24/2012	0.01	mg/L	<0.01	
Butylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
Propylbenzene		8260B	10/24/2012	0.005	mg/L	< 0.005	
-Xylene		8260B	10/24/2012	0.005	mg/L	<0.005	
Isopropyltoluene		8260B	10/24/2012	0.005	mg/L	< 0.005	
c-Butylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
yrene		8260B	10/24/2012	0.005	mg/L	<0.005	
ert-Butylbenzene		8260B	10/24/2012	0.005	mg/L	<0.005	
etrachloroethylene		8260B	10/24/2012	0.005	mg/L	< 0.005	
luene		8260B	10/24/2012	0.005	mg/L	<0.005	
ans-1,2-Dichloroethen	e	8260B	10/24/2012	0.005	mg/L	<0.005	
chloroethene		8260B	10/24/2012	0.005	mg/L	<0.005	
chlorofluoromethane		8260B	10/24/2012	0.005	mg/L	<0.005	
nyl Chloride		8260B	10/24/2012	0.005	mg/L	<0.005	
ample Name: DM	N3					Lab ID#: 2920	091
		Collec	tion Completed:	10/18/2012	10:01	Lab ID#: 2920 Matrix: Wast	
	N3 NOT Applicable	Collec		10/18/2012	10:01		
bllection Began:		Collect <u>Method</u>	tion Completed: Analysis Date / Time	10/18/2012 <u>MRL</u>	10:01 <u>Units</u>		
Dilection Began:			Analysis	<u></u>		Matrix: Wast	ewater
Dilection Began: <u> rameter</u> timony		Method	Analysis Date / Time	MRL	<u>Units</u>	Matrix: Wast <u>Results</u>	ewater
Dilection Began: Irameter timony senic		<u>Method</u> 200.8	Analysis <u>Date / Time</u> 1 1/1/2012	<u>MRL</u> 0.1	<u>Units</u> µg/L	Matrix: Wast <u>Results</u> 0.62	ewater
Ilection Began: rameter timony senic rium		<u>Method</u> 200.8 200.8	Analysis Date / Time 11/1/2012 11/1/2012	<u>MRL</u> 0.1 1	<u>Units</u> μg/L μg/L	Matrix: Wast <u>Results</u> 0.62 15.4	ewater
ollection Began: arameter htimony senic arium eryllium		<u>Method</u> 200.8 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012	MRL 0.1 1 0.005	<u>Units</u> μg/L μg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025	ewater <u>Flags</u>
arameter htimony senic arium eryllium admium		<u>Method</u> 200.8 200.8 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012	MRL 0.1 1 0.005 0.5	<u>Units</u> μg/L μg/L mg/L μg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5	ewater <u>Flags</u>
ellection Began: arameter titimony senic irium eryllium idmium idmium		Method 200.8 200.8 200.7 200.8 200.8	Analysis Date / Time 1 1/1/2012 1 1/1/2012 1 0/31/2012 1 1/1/2012 1 1/1/2012	MRL 0.1 1 0.005 0.5 0.5	<u>Units</u> μg/L μg/L mg/L μg/L μg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5	ewater <u>Flags</u>
arameter htimony senic hrium eryllium admium alcium hromium		Method 200.8 200.8 200.7 200.8 200.8 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012	MRL 0.1 1 0.005 0.5 0.5 0.05	<mark>Units</mark> μg/L μg/L mg/L μg/L μg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6	ewater <u>Flags</u>
Dilection Began: Trameter timony senic rium ryllium idmium idmium idmium idmium balt		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.01	<u>Units</u> μg/L μg/L μg/L μg/L μg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium alcium nromium obalt opper on		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	Units μg/L μg/L μg/L μg/L μg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium alcium nromium obalt opper on		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05	Units µg/L µg/L µg/L µg/L µg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6 0.013 <0.05 <0.05	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium admium boo boo boo boo ad		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units μg/L μg/L μg/L μg/L μg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6 0.013 <0.05 <0.05 0.046	ewater <u>Flags</u>
Arameter Atimony senic arium aryllium admium alcium aromium abalt opper n ad agnesium		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units μg/L μg/L mg/L μg/L μg/L mg/L mg/L mg/L mg/L μg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.13 <0.05 <0.05 <0.05 <0.05 <0.13 <0.05 <0.05 <0.13 <0.05 <0.05 <0.13 <0.05 <0.13 <0.05 <0.13 <0.05 <0.13 <0.05 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium admium admium admium abalt opper an ad agnesium anganese ercury		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/1/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <1 21.0	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium admium admium admium abalt opper an ad agnesium anganese ercury		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	Analysis Date / Time 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units μg/L μg/L μg/L μg/L μg/L mg/L mg/L mg/L μg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01	ewater <u>Flags</u>
arameter atimony senic arium eryllium admium admium alcium mornium obalt opper ad agnesium anganese ercury ckel		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.001 <0.002	ewater <u>Flags</u>
ellection Began: trameter timony senic rium ryllium idmium idmium idcium romium balt pper n ad ignesium inganese prcury skel tassium		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012 10/26/2012 10/26/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.05 0.01 0.0002 0.05	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.0002 <0.05	ewater <u>Flags</u>
arameter Arameter Arimony senic arium aryllium admium admium admium balt opper on balt agnesium anganese ercury ckel otassium elenium		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/26/2012 10/26/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 46.6 0.013 <0.05 <0.05 0.046 <1 21.0 <0.001 <0.0002 <0.05 10.5	ewater <u>Flags</u>
ample Name: DMM ollection Began: ntimony rsenic arium eryllium admium admium admium boolt opper on ead agnesium anganese ercury ckel otassium elenium lver odium		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/31/2012 10/26/2012 10/31/2012 10/19/2012 10/19/2012 11/1/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	ewater <u>Flags</u>
arameter Arameter Aritmony senic arium arium aryllium admium admium admium balt opper on ad agnesium anganese arcury ckel otassium elenium iver		Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/31/2012 10/26/2012 10/31/2012 10/19/2012 10/19/2012 11/1/2012 10/19/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2 0.01	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 46.6 0.013 <0.05 <0.05 <0.05 <0.05 0.046 <1 21.0 <0.001 <0.0002 <0.05 10.5 <2 <0.01	ewater <u>Flags</u>
arameter Arameter Antimony senic arium aryllium admium admium admium admium admium balt opper on ad agnesium anganese ercury ckel btassium elenium kver odium		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/26/2012 10/31/2012 10/19/2012 11/1/2012 10/19/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2 0.01 1	Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.62 15.4 0.025 <0.5 <0.5 <0.5 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.002 <0.001 <0.002 <0.05 <0.05 <0.01 <0.002 <0.05 <0.05 <0.05 <0.01 <0.001 <0.002 <0.05 <0.05 <0.05 <0.05 <0.01 <0.001 <0.001 <0.001 <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	ewater <u>Flags</u>

· ·

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Order 7298 Page 3 of 4

Reviewed by:

Comments:

Flags:

•

•

• .

- S1 Subcontracted to Timpview Analytical
- S2 Subcontracted to American West Analytical Laboratoriee
- н Sample hold time exceeded
- UJ Analyte not detected. Spike or surrogate recovery below limits.

--;

Roy Breslawski, Laboratory Manager

ENVIROPRO LABORATORIES

www.enviroprolabs.com

Chain of Custody Record

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: 801-964-2511 Fax: 801-964-272

Scott Aitken		89-3027	80	1-491-9367						1	Analy	sis	Requ	Jest	 Preservation Code
Contact Name South Utah Vall		one Number te District		Fax Number		2		2			.:			a a	1 = 4°C
Company Name 2450 West 400	South				æ	aine		D 80		1	500 ((20B			, As , Sc, /	2 = HNO ₃
Street Address Springville, UT	84663				on Code	Number of Containers	Container Size	Ammonia 4500NH3G, COD 8000	Nitrate 352.1, TDS 2540C		Ph 4500(H+)B, Chloride 4300 (Cl-), Sulfate D-5 16 (02), Carbonate/Bicerbonate 2320B			Ca, Fe, Mg, Mn, K, Na, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn 200.7 Hg 245.1	$3 = HCI$ $4 = H_2SO_4$
City, State, Zip					atio	r of	ler	500N)B. C 16 (0:	Š	-	Nu. So, Mu.	$5 = H_3 PO_4$
Project Name			Site Loc	ation	Ş	pe	tair	nia 4	352.	15.1	O(H+ D-S		260E	S 20 W	6 = N a ₂ S ₂ O ₃
Sample ID	Date Collected	Time	Matrix	Lab ID	Preservation	Num	Con	Ammo	Nitrate	TOC 415.1	Ph 450 Sulfate Carbor	EDB/DBCP 504.1	VOC 8260B	Ca Fe Be Cd	Comments
DMW'3	10/18/12	10:01	Water	29200A	4	1	1L	\checkmark]				
		10:13	Water	29200AB	1	1	500		1	<u> </u>					
		10.15	Water	2170090	5	3	40		1	1	+				
		10.03	Water	19707941F	6	3	1L 40				1	V			 <u> </u>
		10.17	Water Water	197009G/H		2	40		<u> </u>			V	7		
		10 10	Water	797079T	2	$\frac{2}{1}$	500	<u> </u>						1	
······															
Special Instructio	ns / Comments	<u> </u>			(ILB	elinqui	shed By				(2) Re	linqu	shed i	Ву	 Sampler Initials:
Q auct as	EII	11.d	(ate / Ti	me	0	11		(2) Da	te / T	ime		Method of Shipment
Report as	LIVIOII S	F Flaru	ωφγ		(1) C	0mpan	, SW		18		(2) Co	mpar	ly		 HAND CARRY USPS FEDX UPS
					(1) R	eceive	By	1	5		(2) Re		-	i	СоС
				-	10	ate / Ti / 144 /	17	jL	1:10	Ĩ.	(2) Da				Seal Intact?
Route Results Throu	gh: saitken@suvsv	wd.org			(1) C	ompán	y				(2) Co	mpar	ly .		Yes No

Date: 16/18/12

Page: 2 of 5

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs.com

View 18/2012 14 7/2012 012 9:26 Units mg/L 012 9:26 Units mg/L mg/L 012 9:26	:18 Lab ID#: 2920 Matrix: Was <u>Results</u> <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920 Matrix: Was	tewater Flags S S 116B tewater Flags S S S S	
18/2012 14 7/2012 12 9:26 Units mg/L 12 9:26 Units mg/L mg/L	Lab ID#: 2920 Matrix: Was <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater Flags S S 116B tewater Flags S S S S	
7/2012 012 9:26 <u>Units</u> mg/L 012 9:26 <u>Units</u> mg/L mg/L	Lab ID#: 2920 Matrix: Was <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater Flags S S 116B tewater Flags S S S S	
7/2012 012 9:26 <u>Units</u> mg/L 012 9:26 <u>Units</u> mg/L mg/L	Lab ID#: 2920 Matrix: Was <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater Flags S S 116B tewater Flags S S S S	
012 9:26 <u>Units</u> mg/L mg/L 012 9:26 <u>Units</u> mg/L mg/L	Matrix: Was <u>Results</u> <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater Flags S S 116B tewater Flags S S S S	
Units mg/L mg/L 212 9:26 Units mg/L mg/L	Matrix: Was <u>Results</u> <0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater Flags S S 116B tewater Flags S S S S	
Units mg/L mg/L 212 9:26 Units mg/L mg/L	Results <0.2	Flags S S 16B tewater Flaos S S	
mg/L mg/L 9:26 <u>Units</u> mg/L mg/L	<0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	S S 16B tewater <u>Flaos</u> S S	
mg/L mg/L 9:26 <u>Units</u> mg/L mg/L	<0.2 15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	S S 16B tewater <u>Flaos</u> S S	
mg/L 12 9:26 <u>Units</u> mg/L mg/L	15 Lab ID#: 2920 Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	16B tewater <u>Flaos</u> ช ช า 16C	
Units mg/L mg/L	Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater <u>Flaos</u> S S	
Units mg/L mg/L	Matrix: Was <u>Results</u> 3.71 708 Lab ID#: 2920	tewater <u>Flaos</u> S S	
mg/L mg/L	3.71 708 Lab ID#: 2920	ଞ ଞ 16C	
mg/L mg/L	3.71 708 Lab ID#: 2920	ଞ ଞ 16C	
mg/L	708 Lab ID#: 2920	ଞ 16C	
	Lab ID#: 2920	16C	
9:26			
9:26	Matrix: Was	tewater	
Units	Results	Flags	
mg/L	<u>((cauta</u> <]	<u>9</u>	
	Lab ID#: 2920	16D	
9:26	Matrix: Was		
<u>Units</u>	<u>Results</u>	<u>Flags</u>	
mg/L	152		
mg/L	<1		
mg/L	140		
	—		н
mg/L	159		
	Lab ID#: 2920	16E	
12 9:26	Matrix: Wasi	tewater	
	Reculte	Flage	
l Inite	INCOLICO	_	
Units	<0.0100		
-	mg/L mg/L pH mg/L	mg/L 152 mg/L <1	mg/L 152 mg/L <1

Analyses presented in this report were performed in eccordance with the National Environmental Laboratory Accreditation Program - Inelan

Sample Name: DMW8 Collection Began: Not Applicabi	e Collect	ion Completed:	10/18/2012	9:26	Lab ID#: 2920 Matrix: Wast	
Parameter	Method	Analysis Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u>
Volatiles Prep	5030A	10/24/2012			•	
1,1,1,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,1-Trichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2-Trichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1,2-Trichlorotrifluoroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloroethene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,1-Dichloropropene	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,2,3-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,3-Trichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,4-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
1,2,4-Trimethylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,2-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,2-Dichloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,3,5-Trimethylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,3-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,3-Dichloropropane	8260B	10/24/2012	0.005	mg/L	< 0.005	
1,4-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	< 0.005	
2-Butanone(MEK)	8260B	10/24/2012	0.005	mg/L	<0.003	
2-Chlorotoluene	8260B	10/24/2012	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	10/24/2012	0.005	mg/L	<0.005	
4-Chlorotoluene	8260B 8260B	10/24/2012	0.005	mg/L	<0.005	
4-Methyi 2-pentanone (MIBK)	8260B	10/24/2012	0.005	mg/L	< 0.02	
Acetone	8260B	10/24/2012	0.02	mg/L	<0.02	
Benzene	8260B 8260B	10/24/2012	0.02	mg/L	<0.02	
Bromobenzene		10/24/2012	0.005	mg/L	<0.005 <0.005	
Bromochloromethane	8260B	10/24/2012	0.005	mg/L	<0.005 <0.005	
Bromodichloromethane	8260B	10/24/2012		mg/L	<0.005 <0.005	
Bromotorm	8260B	10/24/2012	0.005 0.005	mg/L	<0.003 <0.005	
	8260B					
Bromomethane	8260B	10/24/2012	0.005	mg/L mg/L	<0.005	
Carbon Disulfide	8260B	10/24/2012	0.005	-	<0.005	
Carbon Tetrachloride	8260B	10/24/2012	0.005	mg/L	<0.005	
Chlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Chloroform	8260B	10/24/2012	0.005	mg/L	<0.005	
Chloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	10/24/2012	0.01	mg/L	< 0.01	
Dibromochloromethane	8260B	10/24/2012	0.005	mg/L	<0.005	
Dibromomethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Dichlorodifluoromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Ethyl Acetate	8260B	10/24/2012	0.02	mg/L	<0.02	
Ethyl Ether	8260B	10/24/2012	0.01	mg/L	< 0.01	
Ethylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

ample Name: DMW8					Lab ID#: 2920	16G
Collection Began: Not Applicable	Collect	tion Completed:	10/18/2012	9:26	Matrix: Was	tewater
arameter	Method	Analysis <u>Date / Time</u>	MRL	<u>Units</u>	Results	Flags
lexachlorobutadiene	8260B	10/24/2012	0.005	mg/L	< 0.005	
opropylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
p-Xylenes	8260B	10/24/2012	0.005	mg/L	<0.005	
ethylene Chloride	8260B	10/24/2012	0.01	mg/L	<0.01	
TBE	8260B	10/24/2012	0.005	mg/L	<0.005	
aphthalene	8260B	10/24/2012	0.01	mg/L	<0.01	
Butylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
Propylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
Xylene	8260B	10/24/2012	0.005	mg/L	< 0.005	
sopropyltoluene	8260B	10/24/2012	0.005	mg/L	< 0.005	
c-Butylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
yrene	8260B	10/24/2012	0.005	mg/L	< 0.005	
rt-Butylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
etrachloroethylene	8260B	10/24/2012	0.005	mg/L	<0.005	
luene	8260B	10/24/2012	0.005	mg/L	<0.005	
ins-1,2-Dichloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005	
chloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005	
ichlorofluoromethane	8260B	10/24/2012	0.005	mg/L	<0.005	
		10/24/2012	0.005	mg/L	<0.005 <0.005	
ample Name: DMW8	8260B Collect	tion Completed:			Lab ID#: 2920 Matrix: Was	
mple Name: DMW8		tion Completed:				
mple Name: DMW8 Dilection Began: Not Applicable				9:26 <u>Units</u>		tewater
ample Name: DMW8 bilection Began: Not Applicable	Collect	tion Completed: Analysis	10/18/2012	9:26	Matrix: Wasi	
ample Name: DMW8 bllection Began: NOLAPPIICABLE irameter timony	Collect <u>Method</u>	tion Completed: Analysis <u>Date / Time</u>	10/18/2012 <u>MRL</u>	9:26 <u>Units</u>	Matrix: Wast	tewater
ample Name: DMW8 billection Began: NOT Applicable arameter atimony senic	Collect <u>Method</u> 200.8	tion Completed: Analysis Date / Time 11/1/2012	10/18/2012 <u>MRL</u> 0.1	9:26 <u>Units</u> µg/L	Matrix: Wast <u>Results</u> 0.53	tewater
ample Name: DMW8 ollection Began: NOL Applicable arameter ntimony senic anum	Collect <u>Method</u> 200.8 200.8	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012	10/18/2012 <u>MRL</u> 0.1 1	9:26 <u>Units</u> µg/L µg/L	Matrix: Wast <u>Results</u> 0.53 13.4	tewater
ample Name: DMW8 bilection Began: NOL Applicable arameter atimony senic anum eryllium	Collect <u>Method</u> 200.8 200.8 200.7	tion Completed: Analysis <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012	10/18/2012 <u>MRL</u> 0.1 1 0.005	9:26 <u>Units</u> µg/L µg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOLAPPIICADIE arameter ntimony rsenic anum eryllium admium	Collect <u>Method</u> 200.8 200.8 200.7 200.8	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012	10/18/2012 <u>MRL</u> 0.1 1 0.005 0.5	9:26 <u>Units</u> µg/L µg/L mg/L µg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOL Applicable arameter ntimony senic anum eryllium admium alcium	Collect <u>Method</u> 200.8 200.8 200.7 200.8 200.8	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5	9:26 <u>Units</u> µg/L µg/L µg/L µg/L µg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5	tewater <u>Flags</u>
ample Name: DMW8 bilection Began: NOL Applicable trameter timony senic num eryllium admium alcium aromium	Collect Method 200.8 200.8 200.7 200.8 200.8 200.8 200.7	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/19/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.5 0.05	9:26 <u>Units</u> µg/L µg/L µg/L µg/L µg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 <0.5 49.8	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOL Applicable arameter ntimony rsenic anum eryllium admium alcium nromium obalt	Collect Method 200.8 200.8 200.7 200.8 200.7 200.8 200.7 200.7	tion Completed: Analysis <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01	9:26 <u>Units</u> µg/L µg/L µg/L µg/L µg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 <0.5 49.8 0.025	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOLAPPIICADIE arameter ntimony ssenic anum eryllium admium alcium nromium obalt opper	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05	tewater <u>Flags</u>
	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.05	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOL Applicable arameter ntimony rsenic anum eryllium admium adcium nromium obalt opper on ead	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.05	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 0.17	tewater <u>Flags</u>
ample Name: DMW8 collection Began: NOL Applicable arameter atimony senic anum eryllium admium alcium aromium obalt opper on ad agnesium	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 1	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L µg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <17 <1	tewater <u>Flags</u>
mple Name: DMW8 billection Began: NOT Applicable mameter timony senic num ryllium dmium licium romium balt pper n ad gnesium anganese	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.8 200.7	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.02 1 0.05	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L µg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <1 19.6	tewater <u>Flags</u>
ample Name: DMW8 Dilection Began: NOL Applicable arameter timony senic unum aryllium admium alcium aromium abalt apper n ad agnesium anganese ercury	Collect <u>Method</u> 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.05 0.02 1 0.05 0.01	9:26 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <1 19.6 <0.01	tewater <u>Flags</u>
ample Name: DMW8 collection Began: NOL Applicable arameter ntimony senic anum eryllium admium action balt opper on ad agnesium anganese ercury ckel	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.02 1 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.02 1 0.05 0.01 0.05	9:26 Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast <u>Results</u> 0.53 13.4 0.024 <0.5 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <1 19.6 <0.01 <0.0002	tewater <u>Flags</u>
ample Name: DMW8 billection Began: NOLAPPIICADIE arameter atimony senic anum aryllium admium alcium aromium abalt opper on ad agnesium anganese ercury ckel atassium	Collect <u>Method</u> 200.8 200.8 200.7 200.8 200.7 200.	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/26/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05 0.01 0.05 0.01 0.0002	9:26 Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 0.17 <1 19.6 <0.01 <0.0002 <0.05 9.11	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOLAPPIICADIE arameter ntimony senic anum eryllium admium addium aromium obalt opper on ad agnesium anganese ercury ckel otassium elenium	Collect <u>Method</u> 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.8 200.7 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.7 200.8 200.8 200.7 200.8 200.7 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.7 200.8 200.	tion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 10/31/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.05 0.01 0.002 0.05 0.01 0.0002 0.05 0.2 2	9:26 <u>Units</u> µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 0.17 <1 19.6 <0.01 <0.0002 <0.05 9.11 4.46	tewater <u>Flags</u>
ample Name: DMW8 collection Began: NOL Applicable arameter ntimony senic anum eryllium admium	Collect Method 200.8 200.8 200.7 200.8 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 11/1/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05 0.01 0.002 0.01 0.0002 0.05 0.2	9:26 Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.0002 <0.05 9.11 4.46 <0.01	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOL Applicable arameter htimony senic anum eryllium admium adcium hromium obalt opper	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/26/2012 10/31/2012 10/19/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.005 0.02 1 0.005 0.01 0.0002 0.05 0.2 2 0.01 1 1	9:26 Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 0.17 <1 19.6 <0.01 <0.0002 <0.05 9.11 4.46 <0.01 180	tewater <u>Flags</u>
ample Name: DMW8 ollection Began: NOLAPPIICable arameter ntimony rsenic anum eryllium admium addium addium hromium obalt opper on aad agnesium anganese ercury ckel otassium elenium lver odium	Collect Method 200.8 200.8 200.7 200.8 200.7	tion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 11/1/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.02 1 0.005 0.02 1 0.005 0.01 0.0002 0.05 0.2 2 0.01	9:26 Units µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wast Results 0.53 13.4 0.024 <0.5 <0.5 49.8 0.025 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.0002 <0.05 9.11 4.46 <0.01	tewater <u>Flags</u>

•

.

•

,

Reviewed by:

Comments:

Flags:

.

- S1 Subcontracted to Timpview Analytical
- \$2 Subcontracted to American West Analytical Laboratories
- H Sample hold time exceeded
- UJ Analyte not detected. Spike or surrogate recovery below limits.

<u>1210- (</u>)

Roy Breslawski, Laboratory Manager

ENVIROPRO LABORATORIES

www.enviroprolabs.com

2712 South 3600 West, Sui West Valley City, UT 84 Phone: 801-964-2 Fax: 801-964-2

.

Chain of Custody Record

Date: (A) 18/12

Page: 3 of

-

Scott Aitken Contact Name		189-3027 Ione Number	80	1-491-9367 Fax Number		1					Analy	sis	Requ	uest	Preservation Code
South Utah Vall Company Name 2450 West 400 Street Address Springville, UT & City, State, Zip Bay View	ey Solid Wast South				Preservation Code	Number of Containers	Container Size	Ammonia 4500NH3G, COD 8000	Nitrate 352.1, TDS 2540C	5.1	Ph 4500(H+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Carbonate/Bicarbonate 2320B	EDB/DBCP 504.1	50B	Ca, Fe, Mg, Mn, K, Na, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn 200.7 Hg 245.1	$1 = 4^{\circ}C$ $2 = HNO_{3}$ $3 = HCI$ $4 = H_{2}SO_{4}$ $5 = H_{3}PO_{4}$ $6 = Na_{2}S_{2}O_{3}$
Project Name Sample ID	Date Collected	Time	Site Loc Matrix	Lab ID	Pres	Num	Cont	Ammon	Nitrate 3	TOC 415.1	Ph 4500 Sulfate 1 Carbona	EDB/DE	VOC 8260B	Ca, Fe, I Be, Cd, TI, V, Z	Comments
DMW 8	10/18/12	1:20	Water	672016A	4	1	1L	V	+		1				
·····		4:31	Water	797016B	1	1	500		1						
		9:32.	Water	792016C	5	3	40			\					
		9:29	Water	1970160	1	1	1L				V				
		9:33	Water	79706F	6	3	40		ļ	ļ	ĺ	1			
		9:34	Water	292016G/H	3	2	40	<u> </u>	ļ	<u> </u>			1		
		9:20	Water	297016 Ť	2		500							√	
	<u> </u>				V (1) D						(2) Re				Complex lock labor
Special Instruction	ns / Comments	•					shed By		L		(2) Re	iinqu	isned i	Бу	Sampler Initials:
Report as	Email	- Hard	Copy		101	ate / Ti	mé Z	18		·	(2) Da				Method of Shipment
					5		5	IR			(2) Co	•			HAND CARRY USPS FEDX UPS
						eceive			<u>, </u>	-	(2) Re		-		CoC
					. (ate 1	1.7 1 4	2	<u>14;</u>	18	(2) Da				Seal Intact?
Route Results Throug	ch: saitken@suvsv	vd.org			(1) C	ompan	y				(2) Co	mpar	ıy		Yes No

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs.com

neae	Analy	tical Test Resu	ults										
South Utah Valley Solid Waste	F	PO# / Project Nam	ne: Bayvie	w									
Scott Aitken													
P.O. Box 507	Date / Time Received: 10/18/2012 14:18												
Springville, UT 84663-0507	Date Reported: 11/7/2012												
Sample Name: DMW9			Lab ID#: 2920	23A									
Collection Began: Not Applicable	Collecti	on Completed: 1	Matrix: Wast	tewater									
Parameter	Method	Analysis Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u>							
Ammonia (NH3-N), Direct ISE	4500(NH3)E	10/19/2012 14:20	0.2	mg/L	<0.2	SI							
Chemical Oxygen Demand	8000	10/19/2012 12:19	10	mg/L	13	9							
Sample Name: DMW9					Lab ID#: 2920	23B							
Collection Began: inot Applicable	Collectio	on Completed: 10	10:37	Matrix: Wast	tewater								
		Analysis				F1							
Parameter	Method	Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u> Si							
Nitrate (NO3-N) Fotal Dissolved Solids (TDS)	352.1	10/19/2012 16:35 10/19/2012 11:08	0.2	mg/L ma/l	3.75	3 SI							
	2540C		20	mg/L	518								
Sample Name: DMW9					Lab ID#: 2920								
Collection Began: ivor Applicable	Collectio	on Completed: 1	0/18/2012	10:37	Matrix: Wast	ewater							
Parameter	Method	Analysis Date / Time	MRL	Units	Results	Flags							
Total Organic Carbon (TOC)	SM5310B	10/19/2012 16:54	1	mg/L	<1	<u></u>							
Sample Name: DMW9					Lab ID#: 2920	 23D							
Collection Began:	Collectio	on Completed: 10	0/18/2012	10:37	Matrix: Wast	ewater							
		Analysis											
Parameter	Method	Date / Time	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>							
Bicarbonate (as CaCO3)	2320B	11/6/2012	1	mg/L	122								
Carbonate (as CaCO3)	2320B	11/6/2012	1	mg/L	<1								
Chloride oH Units	4500 (Cl-)	10/31/2012 10/19/2012 15:35	2	mg/L	1 52		н						
Sulfate	4500(H+)B D-516 (02)	10/30/2012	5	pH mg/L	7.9@20°C 66.1								
Sample Name: DMW9					Lab ID#: 2920	235							
Collection Began: Rock Approvation	Collectio	on Completed: 10	0/18/2012	10:37	Matrix: Wast								
		Analysis	<u> </u>	<u>.</u>									
Parameter	Method	Date / Time	<u>MRL</u>	<u>Units</u>	Results	<u>Flaos</u>							
1,2-Dibromo-3-Chloropropane	504.1	10/19/2012 11:29	0.0103	µg/L	<0.0103	8							
1,2-Dibromoethane	504.1	10/19/2012 11:29	0.0103	µg/L	<0.0103	52							

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Processon -

Sample Name: DMW9					Lab ID#: 2920		
Collection Began: Not Applicable	Collect	tion Completed:	10/18/2012	10:37	Matrix: Wastewater		
Parameter .	Method	Analysis Date / Time	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>	
Volatiles Prep	5030A	10/24/2012		<u></u>		<u></u>	
1,1,1,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	<0.005		
1,1,1-Trichloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,1,2,2-Tetrachloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,1,2-Trichloroethane	8260B	10/24/2012	0.005	mg/L	<0.005		
1,1,2-Trichlorotrifluoroethane	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,1-Dichloroethane	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,1-Dichloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,1-Dichloropropene	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,2,3-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,2,3-Trichloropropane	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,2,4-Trichlorobenzene	8260B	10/24/2012	0.005	mg/L	< 0.005		
1,2,4-Trimethylbenzene	8260B 8260B	10/24/2012	0.003	mg/L	<0.005 <0.005		
1,2-Dichlorobenzene		10/24/2012	0.005	mg/L	<0.005		
1,2-Dichloroethane	8260B 8260B	10/24/2012	0.005	mg/L	<0.005		
1,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005		
1,3.5-Trimethylbenzene		10/24/2012	0.005	mg/L	<0.005 <0.005		
I,3-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005 <0.005		
	8260B	10/24/2012	0.005	mg/L	<0.005 <0.005		
I,3-Dichloropropane	8260B			-			
I,4-Dichlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005		
2,2-Dichloropropane	8260B	10/24/2012	0.005	mg/L	<0.005		
P-Butanone(MEK)	8260B	10/24/2012	0.01	mg/L	<0.01		
	8260B	10/24/2012	0.005	mg/L	<0.005		
	8260B	10/24/2012	0.005	mg/L	< 0.005		
	8260B	10/24/2012	0.005	mg/L	<0.005		
4-Methyl 2-pentanone (MIBK)	8260B	10/24/2012	0.02	mg/L	< 0.02		
Acetone	8260B	10/24/2012	0.02	mg/L	<0.02		
Benzene	8260B	10/24/2012	0.005	mg/L	< 0.005		
	8260B	10/24/2012	0.005	mg/L	< 0.005		
Bromochloromethane	8260B	10/24/2012	0.005	mg/L	< 0.005		
Bromodichloromethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Bromoform	8260B	10/24/2012	0.005	mg/L	<0.005		
Bromomethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Carbon Disulfide	8260B	10/24/2012	0.005	mg/L	<0.005		
Carbon Tetrachloride	8260B	10/24/2012	0.005	mg/L	<0.005		
Chlorobenzene	8260B	10/24/2012	0.005	mg/L	<0.005		
Chloroethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Chloroform	8260B	10/24/2012	0.005	mg/L	<0.005		
Chloromethane	8260B	10/24/2012	0.005	mg/L	<0.005		
sis-1,2-Dichloroethene	8260B	10/24/2012	0.005	mg/L	<0.005		
Cyclohexanone	8260B	10/24/2012	0.01	mg/L	<0.01		
Dibromochloromethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Dibromomethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Dichlorodifluoromethane	8260B	10/24/2012	0.005	mg/L	<0.005		
Ethyl Acetate	8260B	10/24/2012	0.02	mg/ L	<0.02		
Ethyl Ether	8260B	10/24/2012	0.01	mg/L	<0.01		
Ethylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005		

•

• •

.

Analyses presented in this report were performed in accordance with the National Environmental Laboratory Accreditation Program

Sample Name: DMW9	• •• •			10.55	Lab ID#: 2920	
Collection Began: INOT Applicable	Collect	ion Completed:	10/18/2012	10:37	Matrix: Was	iewater
Parameter	<u>Method</u>	Analysis <u>Date / Time</u>	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Hexachlorobutadiene	8260B	10/24/2012	0.005	mg/L	<0.005	
Isopropylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
m,p-Xylenes	8260B	10/24/2012	0.005	mg/L	<0.005	
Methylene Chloride	8260B	10/24/2012	0.01	mg/L	<0.01	
MTBE	8260B	10/24/2012	0.005	mg/L	<0.005	
Naphthalene	8260B	10/24/2012	0.01	mg/L	<0.01	
n-Butylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
n-Propylbenzene	8260B	10/24/2012	0.005	mg/L	<0.005	
o-Xylene	8260B	10/24/2012	0.005	mg/L	<0.005	
p-lsopropyltoluene	8260B	10/24/2012	0.005	mg/L	< 0.005	
sec-Butylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Styrene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Tert-Butylbenzene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Tetrachloroethylene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Toluene	8260B	10/24/2012	0.005	mg/L	< 0.005	
trans-1,2-Dichloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Trichloroethene	8260B	10/24/2012	0.005	mg/L	< 0.005	
Trichlorofluoromethane	8260B	10/24/2012	0.005	mg/L	< 0.005	
Vinyl Chloride	8260B	10/24/2012	0.005	mg/L	< 0.005	
Sample Name: DMW9		on Completed:	<u></u>		Lab ID#: 2920 Matrix: Wast	
Sample Name: DMW9 Collection Began: NOT Applicable	Collect	on Completed: Analysis	10/18/2012	10:37	Lab ID#: 2920 Matrix: Wast	ewater
Sample Name: DMW9 Collection Began: NOT Applicable Parameter	Collect	ion Completed: Analysis <u>Date / Time</u>	10/18/2012 <u>MRL</u>	10:37 <u>Units</u>	Lab ID#: 2920 Matrix: Wast <u>Results</u>	
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony	Collect Method 200.8	on Completed: Analysis Date / Time 11/1/2012	10/18/2012	10:37 <u>Units</u> µg/L	Lab ID#: 2920 Matrix: Wash <u>Results</u> 0,49	ewater
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic	Collect <u>Method</u> 200.8 200.8	on Completed: Analysis Date / Time 11/1/2012 11/1/2012	10/18/2012 <u>MRL</u> 0.1 I	10:37 <u>Units</u> μg/L μg/L	Lab ID#: 2920 Matrix: Wast <u>Results</u> 0.49 10.7	ewater
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium	Collect <u>Method</u> 200.8 200.8 200.7	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012	10/18/2012 MRL 0.1 I 0.005	10:37 <u>Units</u> µg/L µg/L mg/L	Lab ID#: 2920 Matrix: Wast <u>Results</u> 0,49 10.7 0.060	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium	Collect <u>Method</u> 200.8 200.8 200.7 200.8	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5	10:37 <u>Units</u> µg/L µg/L µg/L µg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5	ewater
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium	Collect Method 200.8 200.8 200.7 200.8 200.8	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5	10:37 <u>Units</u> μg/L μg/L μg/L μg/L μg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium	Collect Method 200.8 200.8 200.7 200.8 200.8 200.8 200.8 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/19/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L µg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Collect Method 200.8 200.7 200.8 200.7 200.8 200.8 200.7 200.7	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012	10/18/2012 MRL 0.1 I 0.005 0.5 0.05 0.05 0.01	10:37 <u>Units</u> µg/L µg/L µg/L µg/L µg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0.49 10.7 0.060 <0.5 <0.5 <0.5 47.6 <0.01	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Collect Method 200.8 200.8 200.7 200.8 200.8 200.8 200.7 200.7 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Collect Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron	Collect Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0.49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Collect Method 200.8 200.7 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 1	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L µg/L µg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1.	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.8 200.8	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/12/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L µg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1. 18.8	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Collect Method 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05 0.05 0.02 1 0.05 0.01	10:37 <u>Units</u> µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1. 18.8 <0.01	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Mercury	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.8 200.8	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/12/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05 0.01 0.002	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0,060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1. 18.8 <0.01 <0.002	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	Collect Method 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05 0.05 0.02 1 0.05 0.01	10:37 <u>Units</u> µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1. 18.8 <0.01	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Collect Method 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.02 1 0.05 0.01 0.002	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0,060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e<1. 18.8 <0.01 <0.002	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 10/19/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/19/2012 10/26/2012 10/26/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.02 1 0.05 0.01 0.002 0.05 0.05	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0.49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 0.043 .e<1. 18.8 <0.01 <0.0002 <0.05	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 10/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 10/26/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.02 1 0.05 0.01 0.002 0.05 0.01 0.005 0.01 0.05 0.02 1 0.005 0.01 0.05 0.02 1 0.005 0.02 0.05 0.01 0.05 0.02 1 0.05 0.01 0.05 0.01 0.05 0.05 0.01 0.05 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.05 0.01 0.05 0.01 0.05 0.02 0.05 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.25	10:37 <u>Units</u> µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 <0.05 0.043 .e.<1. 18.8 <0.01 <0.0002 <0.05 7.76	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	ion Completed: <u>Analysis</u> <u>Date / Time</u> 11/1/2012 11/1/2012 10/31/2012 11/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 11/1/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2	10:37 <u>Units</u> µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0.060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 0.043 .e<1. 18.8 <0.01 <0.0002 <0.05 7.76 4.32	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/19/2012 11/1/2012 10/31/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.02 1 0.005 0.02 1 0.005 0.01 0.0002 0.05 0.2 2 0.01	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0,060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 0.043 .e<1. 18.8 <0.01 <0.0002 <0.05 7.76 4.32 <0.01	Flags
Sample Name: DMW9 Collection Began: NOT Applicable Parameter Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Collect Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	ion Completed: Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 10/1/2012 10/19/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 10/19/2012 10/26/2012 10/26/2012 10/19/2012 10/19/2012 10/19/2012 10/19/2012	10/18/2012 MRL 0.1 1 0.005 0.5 0.05 0.05 0.05 0.05 0.02 1 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2 0.01 1	10:37 <u>Units</u> µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lab ID#: 2920 Matrix: Wast 0,49 10.7 0,060 <0.5 <0.5 47.6 <0.01 <0.05 <0.05 0,043 .e<1. 18.8 <0.01 <0.0002 <0.05 7.76 4.32 <0.01 109	Flags

• •

Comments:

Flags:

- S1 Subcontracted to Timpview Analytical
- S2 Subcontracted to American West Analytical Laboratones
- H Sample hold time exceeded
- UJ Analyte not detected. Spike or surrogate recovery below limits.

Reviewed by:

<u>ABC</u>

Roy Breslawski, Laboratory Manager

ENVIROPRO LABORATORIES

801-489-3027

www.enviroprolabs.com

Scott Aitken

Chain of Custody Record

2712 South 3600 West, Sui West Valley City, UT 84 Phone: 801-964-2 Fax: 801-964-2 1,0

 $\|_{2}$ Date: 10-18-12 Page: 4 of 801-491-9367 Preservation Analysis Request

Contact Name										^	-naiy:					Co	de							
South Utah Val Company Name 2450 West 400 Street Address Springville, UT City, State, Zip	South				servation Code	ber of Containers	liner Size	Ammonia 4500NH3G, COD 8000	Nitrate 352.1, TDS 2540C	. J :	Ph 4500(H+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Cathonate/Bicarbonate 2320B	EDB/DBCP 504.1	50B	Ca, Fe, Mg, Mn, K, Na, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, TI, V, Zn 200.7 Hg 245.1		$1 = 4^{o_1}$ 2 = HN 3 = HC $4 = H_2$ $5 = H_3$ 6 = Na	NO₃ Cl SO₄ PO₄							
Project Name Sample ID	Date Collected	Time	Site Loc Matrix	1	Prese	Number	Container	Ammoni	Nitrate 3	TOC 415.f	Ph 4500(Sulfate I Carbonat	EDB/DB	VOC 8260B	Ca, Fe, N Be, Cd, G T1, V, Zr		Comr	nents							
DIMUL 9	10/18/12	10:37	Water	292023A.	<u>E</u> 4	1	1L	V			1													
		10:58	Water	197073P	\mathfrak{P}_1	1	500		V		1													
		10159	Water	29707305	\$5	3	40	1		V														
		10.47	Water	2920230		1	1L				V													
		11'01	Water	197073611		3	40					1												
		11:03-	Water	7970726/4	3	2	40				ļ		1	~										
		7:53	Water	2970731	2	1	500																	
																	··							
Special Instruction	Instructions / Comments					elinqui:	shed By		·		(2) Re	lingu	ished I	Зу		Sampler D.V	r Initials:							
Report as	separt as Final 1 Hard Papy						t as Frazil + Hard Coov			port as Email + Hard Copy			(1) D (0)	ate / Tu	me	ô 7, 1	8	(2) Date / Time			.	Method of Sh		
						ompan	512				(2) Co		-			HAND O USPS FE								
						OCENED	XC.	-	2-		(2) Re					Co	ъС							
					10		me /17,		4:	18	(2) Da					Seal I	ntact?							
Route Results Throu	gh: saitken@suvsv	wd.org			(1) C	ompan	у				(2) Co	mpar	ıy			Yes	No							

2712 South 3600 West, Suite E West Valley City, UT 84119 Phone: (801) 964-2511 • Fax: (801) 964-2721 www.enviroprolabs.com

neac.	Analy	tical Test Res	ults			
South Utah Valley Solid Waste	F	PO# / Project Na	me: Bayvie	w		
Scott Aitken						
P.O. Box 507	Da	te / Time Receiv	ed: 10/24/2	2012 9:2	27	
Springville, UT 84663-0507		Date Report	ed: 11/9/20	D12		
Sample Name: DIMW6					Lab ID#: 2980	01A
Collection Began: Not Applicable		on Completed:	0/24/2012	7:39	Matrix: Wate	er .
Parameter	Method	Analysis Date / Time	MRL	<u>Units</u>	Results	Flags
Ammonia (NH3-N), Direct ISE	4500(NH3)E	10/25/2012 10:55	0.2	mg/L	< 0.2	SI
Chemical Oxygen Demand	8000 8000	10/24/2012 17:39		mg/L	11	Si
Sample Name: DMW6					Lab ID#: 2980	01B
Collection Began: Not Applicable	- Collectio	on Completed:	0/24/2012	7:39	Matrix: Wate	r
		Analysis	MDI	Unito	Results	Flore
Parameter	Method	Date / Time 10/25/2012 11:55	MRL	<u>Units</u>		<u>Flags</u> Si
vitrate (NO3-N) Fotal Dissolved Solids (TDS)	352.1 2540C	10/26/2012 11:33	0.2 20	mg/L mg/L	1.10 430	3 SI
	23400	10/20/2012 14:23			450	
Sample Name: DMW6					Lab ID#: 2980	01C
Collection Began: Not Applicable	- Collectio	on Completed:	0/24/2012	7:39	Matrix: Wate	r
arameter	Method	Analysis Date / Time	MRL	Units	Results	Flags
otal Organic Carbon (TOC)	SM5310B	10/29/2012 15:39	1	mg/L	1.06	52
ample Name: DMW6	······································		· · · · · · · · · · · · · · · · · · ·		Lab ID#: 2980	01D
Collection Began:	Collectio	on Completed:	0/24/2012	7:39 [.]	Matrix: Wate	r
Parameter	Method	Analysis Date / Time	MRL	Units	Results	Flags
Bicarbonate (as CaCO3)	2320B	11/6/2012	1	mg/L	137	<u></u>
arbonate (as CaCO3)	2320B	11/6/2012	1	mg/L	<	
chloride	4500 (Cl-)	10/31/2012	2	mg/L	93.9	
H Units	4500(H+)B	10/24/2012 15:50		рH	7.6@20°C	
Sulfate	D-516 (02)	10/30/2012	5	mg/L	70.0	
Sample Name: DMW6					Lab ID#: 2980	01E
Collection Began:	Collectio	on Completed:	0/24/2012	7:39	Matrix: Wate	e r
	Nothod	Analysis Date / Time	MRL	<u>Units</u>	Results	Flags
^o arameter	Methon					
Parameter I,2-Dibromo-3-Chloropropane	<u>Method</u> 504.1	10/30/2012 11:40		µg/L	< 0.0105	<u>9</u>

Analyses presented in this report were performent in accordance with the National Environmental Laboratory Accreditation Program

.

Sample Name: DMW6					Lab ID#: 2980	
Collection Began: Not Applicat	Die Collect	ion Completed:	10/24/2012	7:39	Matrix: Wate)r
Parameter	Method	Analysis <u>Date / Time</u>	MRL	<u>Units</u>	<u>Results</u>	<u>Flags</u>
Volatiles Prep	5030A	11/1/2012			•	
1,1,1,2-Tetrachloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1,1-Trichloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1,2,2-Tetrachloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1, 1, 2-Trichloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1,2-Tnchlorotrifluoroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1-Dichloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1-Dichloroethene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,1-Dichloropropene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2,3-Trichlorobenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2,3-Trichloropropane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2,4-Trichlorobenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2,4-Trimethylbenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2-Dichlorobenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2-Dichloroethane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,2-Dichloropropane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,3,5-Trimethylbenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,3-Dichlorobenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
1,3-Dichloropropane	8260B	11/1/2012	0.005	mg/L	<0.005	
1,4-Dichlorobenzene	8260B	11/1/2012	0.005	mg/L	< 0.005	
2,2-Dichloropropane	8260B	11/1/2012	0.005	mg/L	<0.005	
2-Butanone(MEK)	8260B	11/1/2012	0.01	mg/L	<0.01	
2-Chlorotoluene	8260B	11/1/2012	0.005	mg/L	< 0.005	
2-Nitropropane	8260B	11/1/2012	0.005	mg/L	< 0.005	
4-Chlorotoluene	8260B	11/1/2012	0.005	mg/L	<0.005	
4-Methyl 2-pentanone (MIBK)	8260B	11/1/2012	0.02	mg/L	<0.02	
Acetone	8260B	11/1/2012	0.02	mg/L	<0.02	
Benzene	8260B	11/1/2012	0.005	mg/L	< 0.005	
Bromobenzene	8260B	11/1/2012	0.005	mg/L	<0.005	
Bromochloromethane	8260B	11/1/2012	0.005	mg/L	<0.005	
Bromodichloromethane	8260B	11/1/2012	0.005	mg/L	< 0.005	
Bromoform	8260B	11/1/2012	0.005	mg/L	< 0.005	
Bromomethane	8260B	11/1/2012	0.005	mg/L	< 0.005	
Carbon Disulfide	8260B	11/1/2012	0.005	mg/L	< 0.005	
Carbon Tetrachloride	8260B	11/1/2012	0.005	mg/L	< 0.005	
Chlorobenzene	8260B	11/1/2012	0.005	mg/L	< 0.005	
Chloroethane	8260B	11/1/2012	0.005	mg/L	< 0.005	UJ
Chloroform	8260B	11/1/2012	0.005	mg/L	< 0.005	
Chloromethane	8260B	11/1/2012	0.005	mg/L	< 0.005	
cis-1,2-Dichloroethene	8260B	11/1/2012	0.005	mg/L	< 0.005	
Cyclohexanone	8260B	11/1/2012	0.005	mg/L	<0.003	
Dibromochloromethane	8260B	11/1/2012	0.005	mg/L	<0.01	
Dibromomethane	8260B	11/1/2012	0.005	mg/L	<0.005	
Dichlorodifluoromethane	8260B 8260B	11/1/2012	0.005	mg/⊑ mg/L	<0.005	
Ethyl Acetate	8260B 8260B	11/1/2012	0.003	mg/L	<0.003	
Ethyl Ether		11/1/2012	0.02	mg/∟	<0.02 <0.01	
Ethylbenzene	8260B			-		
	8260B	11/1/2012	0.005	mg/L	<0.005	

. .

.

nelan

ample Name: DM		A _114	lan Camalatada	10/04/0010	7.20	Lab ID#: 2980 Matrix: Wate	
Collection Began:	ivot Applicable	Collect	tion Completed:	10/24/2012	/:39		;r
aramata-		<u>Method</u>	Analysis Date / Time	MRL	<u>Units</u>	Results	<u>Flags</u>
'arameter Iexachlorobutadiene		8260B	11/1/2012	0.005	mg/L	< 0.005	<u>r layo</u>
opropylbenzene		8260B	11/1/2012	0.005	mg/L	<0.005	
• • •			11/1/2012	0.005	mg/L	<0.005 <0.005	
,p-Xylenes		8260B 8260B	11/1/2012	0.003	mg/L	<0.005	
ethylene Chloride TBE			11/1/2012	0.005	mg/L	<0.01	
		8260B	11/1/2012		mg/L	<0.003	
aphthalene		8260B	11/1/2012	0.01	mg/L	<0.005	
Butylbenzene		8260B	11/1/2012	0.005 0.005	mg/L	<0.003 <0.005	
Propylbenzene		8260B	11/1/2012		mg/L	<0.003	
Xylene		8260B		0.005	-		
Isopropyltoluene		8260B	11/1/2012	0.005	mg/L	<0.005	
c-Butylbenzene		8260B	11/1/2012	0.005	mg/L	<0.005	
yrene		8260B	11/1/2012	0.005	mg/L	<0.005	
ert-Butylbenzene		8260B	11/1/2012	0.005	mg/L	<0.005	
trachloroethylene		8260B	11/1/2012	0.005	mg/L	<0.005	
		8260B	11/1/2012	0.005	mg/L	<0.005	
ns-1,2-Dichloroethen	e	8260B	11/1/2012	0.005	mg/L	<0.005	
chloroethene		8260B	11/1/2012	0.005	mg/L	<0.005	
ichlorofluoromethane		8260B	11/1/2012	0.005	mg/L	< 0.005	
nyl Chloride		8260B	11/1/2012	0.005	mg/L	<0.005	
				<u></u>		Lab ID#: 2980	011
ample Name: DM	№6 Пос Аррікаріе	Collect	ion Completed:	10/24/2012	7:39	Lab ID#: 2980 Matrix: Wate	
mple Name: DM Ilection Began:			Analysis			Matrix: Wate	
mple Name: DM Ilection Began: rameter		Method	Analysis Date / Time	MRL	<u>Units</u>	Matrix: Wate	
mple Name: DM Ilection Began: Irameter timony		<u>Method</u> 200.8	Analysis <u>Date / Time</u> 11/1/2012	<u>MRL</u> 0.1	<u>Units</u> µg/L	Matrix: Wate <u>Results</u> 0.38	
mple Name: DM Ilection Began: rameter timony senic		<u>Method</u> 200.8 200.8	Analysis Date / Time 11/1/2012 11/1/2012	<u>MRL</u> 0.1 1	<mark>Units</mark> µg/L µg/L	Matrix: Wate Results 0,38 17.9	Flags
mple Name: DM Ilection Began: rameter timony senic rium		Method 200.8 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012	<u>MRL</u> 0.1 1 0.005	<u>Units</u> µg/L µg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 (0.047	Flags (Jhi
Imple Name: DM Dilection Began: Irameter Itimony senic Irium Iryllium		Method 200.8 200.8 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012	<u>MRL</u> 0.1 1 0.005 0.5	Units yg/L yg/L mg/L yg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5	Flags
ample Name: DM Dilection Began: arameter atimony senic arium aryllium admium		Method 200.8 200.8 200.7 200.8 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012	MRL 0.1 1 0.005 0.5 0.5	Units yg/L yg/L mg/L µg/L µg/L	Matrix: Wate <u>Results</u> 0.38 17.9 (0.047 <0.5 <0.5	Flags ÇJhi UJ
mple Name: DM Ilection Began: rameter timony senic rium ryllium dmium lcium		Method 200.8 200.8 200.7 200.8 200.8 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.5 0.05	Units yg/L yg/L mg/L µg/L µg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <0.5 <22.8	Flags (Jhi
Imple Name: DM Dilection Began: Itimony senic rium aryllium admium alcium aromium		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01	Units yg/L yg/L mg/L µg/L µg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01	Flags ÇJhi UJ
mple Name: DM Dilection Began: timony senic rium ryllium dmium lcium romium balt		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05	Units yg/L yg/L mg/L µg/L µg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05	Flags ÇJhi UJ
ample Name: DM bilection Began: arameter attimony senic arium aryllium admium admium alcium aromium abalt apper		Method 200.8 200.8 200.7 200.8 200.8 200.8 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 22.8 <0.01 <0.05 <0.05 <0.05	Flags ∫Jhi UJ ,Jhi.
ample Name: DM Dilection Began: Intimony senic Intimony senic Intimony senic Intimony senic Intimony senic Intimony senic Intimony Senic Intimo Senic I		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	Flags ÇJhi UJ
ample Name: DM bilection Began: arameter htimony senic arium aryllium admium alcium balt opper n ad		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	<u>Units</u> μg/L μg/L μg/L μg/L μg/L mg/L mg/L mg/L μg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <1.0037 1.52	Flags ∫Jhi UJ ,Jhi.
ample Name: DM bilection Began: arameter htimony senic arium eryllium admium alcium hromium balt opper in ad		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.01 0.05 0.02 1 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	Flags ∫Jhi UJ ,Jhi.
Imple Name: DM Dilection Began: Immeter timony senic rium ryllium Idmium Icium romium Ibalt pper n ad Ignesium Inganese		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/8/2012 11/8/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L µg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	Flags ∫Jhi UJ ,Jhi.
mple Name: DM Methods by the provided second timony senic rium ryllium dmium lcium romium balt pper n ad gnesium nganese rcury		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.037 1.52 9.54 <0.01 <0.001 <0.002	Flags ∫Jhi UJ ,Jhi.
Imple Name: DM Delection Began: Immeter timony senic rium ryllium dmium lcium romium balt pper n ad ignesium inganese ercury		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/8/2012 10/31/2012 11/7/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05	<u>Units</u> μg/L μg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.002 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	Flags ∫Jhi UJ ,Jhi.
Imple Name: DM Delection Began: Interameter trimony senic rrium aryllium admium admium admium admium abalt apper n ad agnesium anganese ercury ckel		Method 200.8 200.8 200.7 200.8 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 11/7/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wate <u>Results</u> 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.037 1.52 9.54 <0.01 <0.001 <0.002	Flags ∫Jhi UJ ,Jhi.
ample Name: DM Dilection Began: Arameter Atimony senic Aryllium Admium A		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/8/2012 10/31/2012 11/7/2012 10/31/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05	<u>Units</u> μg/L μg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.002 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	Flags ∫Jhi UJ ,Jhi.
ample Name: DM Dilection Began: Arameter Atimony senic Arium Aryllium Admium Ad		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 11/1/2012 11/8/2012 10/31/2012 11/7/2012 10/31/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.037 1.52 9.54 <0.01 <0.0002 <0.05 5.80	Flags ∫Jhi UJ ,Jhi.
ample Name: DMM collection Began: arameter ntimony senic arium eryllium admium		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/8/2012 10/31/2012 10/31/2012 10/31/2012 11/8/2012 11/8/2012 11/7/2012 11/8/2012 11/8/2012 11/8/2012 11/8/2012 11/8/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.05 0.01 0.0002 0.05 0.2 2	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.037 1.52 9.54 <0.01 <0.0002 <0.05 5.80 2.39	Flags (Jhi UJ (Jhi
ample Name: DM Dilection Began: arameter atimony senic arium eryllium admium admium admium admium balt opper on ad agnesium anganese ercury ckel atassium elenium ver		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/8/2012 10/31/2012 11/8/2012 11/8/2012 11/8/2012 11/8/2012 11/8/2012 11/1/2012 10/31/2012	MRL 0,1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.05 0.02 1 0.005 0.01 0.0002 0.05 0.2 2 0.01	Units yg/L yg/L mg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L yg/L mg/L yg/L	Results 0.38 17.9 0.047 <0.5	Flags Flags Jhi UJ Jhi
ample Name: DM Dilection Began: arameter attimony senic arium eryllium admium admium admium admium balt opper on ad agnesium anganese ercury ckel ttassium elenium ver dium		Method 200.8 200.8 200.7 200.8 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.8 200.7 200.8	Analysis Date / Time 11/1/2012 11/1/2012 10/31/2012 11/1/2012 11/1/2012 11/1/2012 10/31/2012 10/31/2012 10/31/2012 10/31/2012 11/7/2012 10/31/2012 11/8/2012 11/8/2012 11/1/2012 10/31/2012 11/8/2012 11/8/2012	MRL 0.1 1 0.005 0.5 0.5 0.05 0.05 0.05 0.02 1 0.005 0.01 0.0002 0.05 0.2 2 0.01 1	<u>Units</u> μg/L μg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L μg/L mg/L μg/L mg/L	Matrix: Wate Results 0.38 17.9 0.047 <0.5 <0.5 <22.8 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.037 1.52 9.54 <0.01 <0.0002 <0.05 5.80 2.39 <0.01 <122	Flags Flags Jhi UJ Jhi

.

Reviewed by:

Comments:

.

Flags:

- S1 Subcontracted to Timpview Analytical
- S2 Subcontracted to American West Analytical Laboratories
- Jhi Estimated Value. Result may be blased high. Spike or Surrogate recovery above QC limits.
- UJ Analyte not detected. Spike or surrogate recovery below limits.

12B.C

Roy Breslawski, Laboratory Manager

ENVIROPRO LABORATORIES

www.enviroprolabs.com

2712 South 3600 West, Sui^v West Valley City, UT 84 Phone: 801-964-2 Fax: 801-964-2

Chain of Custody Record

OFC 24 Date: <u>10-12</u>

Page: 1 of

Scott Aitken Contact Name		89-3027 one Number	801-491-9367 Fax Number								Analy	sis	Requ	Jest		Preservation Code
South Utah Val Company Name 2450 West 400 Street Address Springville, UT	South	e District			n Code	Number of Containers	Size	Ammonia 4500NH3G, COD 8000	2540C		Ph 4500(H+)B, Chloride 4500 (Cl-), Sulfate D-516 (02), Carbonate/Bicarbonate 2320B			n, K., Na, Sb, As, Ba, , Cu, Pb, Ni, Se, Ag, 7 Hg 245, J		1 = 4°C 2 = HNO₃ 3 = HCI 4 = H₂SO₄
City, State, Zip			Elbir F Site Loc	c_1, \dots, t_{-}	Preservation	ber of C	Container S	ila 4500NH:	Nitrate 352.1, TDS 2540C	15.1)(H+)B, Ch D-516 (02), atte/Bicarthor	EDB/DBCP 504.1	260B	Ca, Fe, Mg, Mn, K, Be, Cd, Cr, Co, Cu, Tl, V, Zn 200.7 Hj		$5 = H_3 PO_4$ $6 = Na_2 S_2 O_3$
Sample ID	Date Collected	Time	Matrix	Lab ID	Pres	Mum	Cont	Аттю	Nitrate	TOC 415.1	Ph 450 Sulfate Carbon	EDB/D	VOC 8260B	ດີສີ ຊີອີດ 1, 2		Comments
DMW6	7.34-764		Water	= 98001A	4	1	1L	V								
,	7 44 741		Water	7780018	1	1	500		1							
	756-7:57		Water	298001C	5	3	40			√		•				
	1 1		Water	298001D	1	1	lL				1		,		-	
	757 756		Water	298201E	6	3	40					1				
	74.751		Water	2980016	3	2	40		İ				1			
	7:4575-		Water	298001E	2	1	500							√		
Special Instructio	ons / Comments			······		Son	hed By	$\overline{\lambda}$					Sampler Initials:			
					(1) D	ate / Ti	me '-/Z		9:2	17	(2) Da	te / T	ime			Method of Shipment
					(1) C	ompan 301	150	1-			(2) Co	· ·				HAND CARRY USPS FEDX UPS
				·····	(1) 8		By		j		(2) Re		•			CoC
					(1) D /c	ate/Ti	ne	9:	<i>27</i>		(2) Da	te / T	ime			Seal Intact?
Route Results Throu	gh: saitken@suvsw	d.org			(I) C	ompan					(2) Co	mpar	y			Ves No

Note: DMW #6

We lengthend The Pump how 18" to place The pump into the water colons - water love has dorped and the pumps was that correctly Pumping.

GROUNDWATER MONITORING PROGRAM BAYVIEW MUNICIPAL SOLID WASTE LANDFILL SOUTH UTAH VALLEY SOLID WASTE DISTRICT

DATE: 2010-10-10-2012

SAMPLED BY: ORIGINATION SCOTT DITINE

RECORDED BY: BEBy HEREBA

WEATHER:

elear / Sool

Well Nurabor	Depth of Well (fact)	Depth to Water (fact)	Templox_P	pH	Conductivity	Quinnents
DAAWA	300					
DMANZ	276				1	
DHAVO	308	255	13.27	14 (76)	623.4	clear / cool
DMN4	185					
DMW5	210					
CRAWS	168	159	13.60	8.19	745.8	zhoar/ Gosl
DMW7	293	271.5	12.52	\$.58	793	Glear/ Cool
DAWB	270	255.4	13.25	8.45	369	clear / cool
DWM	2:27.10		13.79	8.41	409	Clour / Gral
					·	